Two-person Bargaining Game

1. **Two-person Strategic Form Game**

 $(N = \{1, 2\}, (S_1 = \{s_1, \ldots, s_m\}, S_2 = \{t_1, \ldots, t_n\}, (g_1, g_2))$ $g_1(s_i, t_j) = a_{ij}, g_2(s_i, t_j) = b_{ij}$

(a) Correlated Strategy

 $r = (r_{11}, ..., r_{mn}), \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} = 1, r_{ij} \ge 0, i = 1, ..., m, j = 1, ..., n$ r_{ij} : probability that (s_i, t_j) is chosen

- (b) Expected Payoff $u_1 = \sum_{i=1}^m \sum_{j=1}^n a_{ij} r_{ij}, u_2 = \sum_{i=1}^m \sum_{j=1}^n b_{ij} r_{ij}$
- (c) Feasible Set $R = \{u = (u_1, u_2)|u_1 = \sum_{i=1}^m \sum_{j=1}^n a_{ij}r_{ij}, u_2 = \sum_{i=1}^m \sum_{j=1}^n b_{ij}r_{ij}\}\$
- (d) Disagreement Point $u^0 = (u_1^0, u_2^0)$ (e.g. maximin value, minimax value, Nash equilibrium outcome)

2. **Bargaining Problem** (R, u^0)

- (a) *R*: a convex and compact (closed and bounded) subset of \mathbb{R}^2 (two-dimensional Euclidean space)
- (b) $u^0 \in R$
- (c) there is a $u = (u_1, u_2) \in R$ such that $u_1 > u_1^0, u_2 > u_2^0$

Denote by $\mathcal B$ the set of all bargaining problems (R, u^0)

- *R* is *convex* \Leftrightarrow for any $u, v \in R$ and for any $\alpha(0 \leq \alpha \leq 1)$, $\alpha u + (1 \alpha)v \in R$
- *R* is *bounded* \Leftrightarrow there exists $M \in \Re$ such that for any $u = (u_1, u_2) \in R$, $-M \leq$ $u_1, u_2 \leq M$
- *R* is *closed* \Leftrightarrow for any sequence $u^1, u^2, \dots \in R$ such that $u^n \to u, u \in R$.

3. **Nash Bargaining Solution**

A function $f : \mathcal{B} \to \mathbb{R}^2$ that satisfies the following four axioms:

(a) (Strong) Pareto optimality For every $(R, u^0) \in B$ $f(R, u^0) = (f(R, u^0)_1, f(R, u^0)_2)$ must be a strong Pareto optimal alternative in *R*.

(Definition of Strong Pareto Optimality) *u* = (u_1, u_2) is (strong) Pareto optimal in *R* ⇔ if there is a $u' \in R$ with $u'_1 \ge u_1, u'_2 \ge u_2$, then $u' = u$

(b) Symmetry

If (R, u^0) is symmetric then $f(R, u^0)_1 = f(R, u^0)_2$

(Definition of Symmetry for (R, u^0)) $(R, u⁰)$ is symmetric ⇔ (1) if $(u_1, u_2) \in R$, then $(u_2, u_1) \in R$ $(2)u_1^0 = u_2^0$

(c) Independence of Strictly Positive Affine Transformation For (R, u^0) define (R', u'^0) as follows

 $R' = \{u' = (u'_1, u'_2)|u'_1 = \alpha_1u_1 + \beta_1, u'_2 = \alpha_2u_2 + \beta_2, u = (u_1, u_2) \in R\}$ $u_1^{\prime 0} = \alpha_1 u_1^0 + \beta_1,$ $u_2^{\prime 0} = \alpha_2 u_2^0 + \beta_2$ $\alpha_1 > 0, \alpha_2 > 0, \beta_1, \beta_2$ are constants

$$
f(R', u'^0)_1 = \alpha_1 f(R, u^0)_1 + \beta_1,
$$

\n
$$
f(R', u'^0)_2 = \alpha_2 f(R, u^0)_2 + \beta_2
$$

- (d) Independence of Irrelevant Alternatives For (R, u^0) if there exists $T \subseteq R$ such that $f(R, u^0) \in T, u^0 \in T$, then $f(T, u^0) = f(R, u^0)$
- 4. **Existence and Uniqueness of Nash Bargaining Solution** There exists a unique $f : \mathcal{B} \to \mathbb{R}^2$ that satisfies the above four axioms. Moreover, for any bargaining problem $(R, u^0) \in \mathcal{B}$ $f(R, u^0)$ solves

$$
max{ (u1 - u10)(u2 - u20)(u1, u2) \in R, u1 \ge u10, u2 \ge u20 }
$$

This *f* is the Nash bargaining solution.