Two-person Bargaining Game

1. Two-person Strategic Form Game

 $(N = \{1, 2\}, (S_1 = \{s_1, ..., s_m\}, S_2 = \{t_1, ..., t_n\}), (g_1, g_2))$ $g_1(s_i, t_j) = a_{ij}, g_2(s_i, t_j) = b_{ij}$

(a) Correlated Strategy

 $r = (r_{11}, ..., r_{mn}), \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} = 1, r_{ij} \ge 0, i = 1, ..., m, j = 1, ..., n$ r_{ij} : probability that (s_i, t_j) is chosen

- (b) Expected Payoff $u_1 = \sum_{i=1}^m \sum_{j=1}^n a_{ij} r_{ij}, u_2 = \sum_{i=1}^m \sum_{j=1}^n b_{ij} r_{ij}$
- (c) Feasible Set $R = \{ u = (u_1, u_2) | u_1 = \sum_{i=1}^m \sum_{j=1}^n a_{ij} r_{ij}, \ u_2 = \sum_{i=1}^m \sum_{j=1}^n b_{ij} r_{ij} \}$
- (d) Disagreement Point $u^0 = (u_1^0, u_2^0)$ (e.g. maximin value, minimax value, Nash equilibrium outcome)

2. Bargaining Problem (R, u^0)

- (a) R: a convex and compact (closed and bounded) subset of \Re^2 (two-dimensional Euclidean space)
- (b) $u^0 \in R$
- (c) there is a $u = (u_1, u_2) \in R$ such that $u_1 > u_1^0, u_2 > u_2^0$

Denote by \mathcal{B} the set of all bargaining problems (R, u^0)

- R is convex \Leftrightarrow for any $u, v \in R$ and for any $\alpha(0 \le \alpha \le 1), \alpha u + (1 \alpha)v \in R$
- R is bounded \Leftrightarrow there exists $M \in \Re_+$ such that for any $u = (u_1, u_2) \in R, -M \leq u_1, u_2 \leq M$
- R is closed \Leftrightarrow for any sequence $u^1, u^2, \dots \in R$ such that $u^n \to u, u \in R$.

3. Nash Bargaining Solution

A function $f: \mathcal{B} \to \Re^2$ that satisfies the following four axioms:

(a) (Strong) Pareto optimality For every $(R, u^0) \in B$ $f(R, u^0) = (f(R, u^0)_1, f(R, u^0)_2)$ must be a strong Pareto optimal alternative in R.

(Definition of Strong Pareto Optimality) $u = (u_1, u_2)$ is (strong) Pareto optimal in $R \Leftrightarrow$ if there is a $u' \in R$ with $u'_1 \ge u_1, u'_2 \ge u_2$, then u' = u

(b) Symmetry

If (R, u^0) is symmetric then $f(R, u^0)_1 = f(R, u^0)_2$

 $\begin{array}{l} (\text{Definition of Symmetry for } (R, u^0) \\ (R, u^0) \text{ is symmetric } \Leftrightarrow \\ (1) \text{if } (u_1, u_2) \in R, \text{ then } (u_2, u_1) \in R \\ (2) u_1^0 = u_2^0 \end{array}$

(c) Independence of Strictly Positive Affine Transformation For (R, u^0) define (R', u'^0) as follows

 $\begin{aligned} R' &= \{u' = (u'_1, u'_2) | u'_1 = \alpha_1 u_1 + \beta_1, u'_2 = \alpha_2 u_2 + \beta_2, u = (u_1, u_2) \in R \} \\ u'^0_1 &= \alpha_1 u^0_1 + \beta_1, \\ u'^0_2 &= \alpha_2 u^0_2 + \beta_2 \\ \alpha_1 > 0, \alpha_2 > 0, \beta_1, \beta_2 \text{ are constants} \end{aligned}$

$$f(R', u'^{0})_{1} = \alpha_{1} f(R, u^{0})_{1} + \beta_{1},$$

$$f(R', u'^{0})_{2} = \alpha_{2} f(R, u^{0})_{2} + \beta_{2}$$

- (d) Independence of Irrelevant Alternatives For (R, u^0) if there exists $T \subseteq R$ such that $f(R, u^0) \in T, u^0 \in T$, then $f(T, u^0) = f(R, u^0)$
- 4. Existence and Uniqueness of Nash Bargaining Solution There exists a unique $f : \mathcal{B} \to \Re^2$ that satisfies the above four axioms. Moreover, for any bargaining problem $(R, u^0) \in \mathcal{B}$ $f(R, u^0)$ solves

$$max\{(u_1 - u_1^0)(u_2 - u_2^0) | (u_1, u_2) \in R, u_1 \ge u_1^0, u_2 \ge u_2^0\}$$

This f is the Nash bargaining solution.