
Problem Set 1

1. For the following bargaining games, find the Nash bargaining solution by (a) solving the
maximization problem and by (b) using only the four axioms.

(a) R is the closed region inside the triangle with vertices (0, 0), (9, 0), (0, 6) and the
disagreement point is u0 = (0, 0)

(b) R is the closed region inside the triangle with vertices (0, 0), (9, 0), (0, 6) and the
disagreement point is u0 = (3, 2)

(c) R is the closed region inside the triangle with vertices (0, 0), (8, 0), (0, 8) and the
disagreement point is u0 = (2, 1)

(d) R is the closed region inside the quadrilateral with vertices (0, 0), (0, 6), (6, 3), (8, 0)
and the disagreement point is (0, 0)

(e) R is the closed region inside the quadrilateral with vertices (0, 0), (0, 6), (6, 3), (8, 0)
and the disagreement point is (2, 2)

2. Proof of the Existence and Uniqueness of the Nash Bargaining Solution
Nash’s Theorem
There is only one solution f : B → <2 that satisfies Pareto optimality, Symmetry, Preser-
vation under Strictly Increasing Affine Transformation Ｂ nd Independence of Irrelevant
Alternatives. Moreover, for any (R, u0), f(R, u0) solves

max{(u1 − u0
1)(u2 − u0

2)|(u1, u2) ∈ R, u1 ≥ u0
1, u2 ≥ u0

2}

and the solution (u1, u2) to the above maximization problem is unique. This f is called
the Nash bargaining solution
Let B be the set of bargaining problems (R, u0) such that

• R is a convex and compact subset of <2

• u0 = (u0
1, u

0
2) ∈ R．

• There is a (u1, u2) ∈ R such that u1 > u0
1, u2 > u0

2

(Proof)

(a) Let f be a function such that for each (R, u0), f(R, u0) is the solution to the max-
imization problem above. To show that f above is well-defined as a function (i.e.
f(R, u0) is single-valued for each (R, u0))

Let H(u1, u2) = (u1 − u0
1)(u2 − u0

2) and let R′ = {u ∈ R|u1 ≥ u0
1, u2 ≥ u0

2}
Because R is compact, R′ is also compact
Because H is a continuous function on R′, H attains a maximum on R′

(Problem) Prove the following statements.
i. If s∗ = (s∗1, s∗2) is a maximizer for H on R′, then s∗1 > u0

1 and s∗2 > u0
2

ii. R′ is convex
iii. There is only one such s∗ = (s∗1, s∗2); therefore f is a well-defined function

(Hint)Suppose there is another maximizer t∗ = (t∗1, t∗2) in R′, that is different
from s∗; define r∗ = (r∗1, r∗2) = ((s ∗1 +t∗1)/2, (s ∗2 +t∗2)/2)
Show that H(r∗1, r∗2) > H(s∗1, s∗2) and (r∗1, r∗2) ∈ R′, which contradicts the
maximality of s∗
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(b) (Problem) Show that f satisfies Pareto optimality, Symmetry, Preservation under
Strictly Increasing Affine TransformationＢ nd Independence of Irrelevant Alterna-
tives.

(c) To show that f is the unique solution that satisfies the four axioms:
Let g : B → <2 be another solution that satisfies Pareto optimality, Symmetry,

Preservation under Strictly Increasing Affine Transformation, and Independence of
Irrelevant Alternatives.

It is sufficient to show that for each(R, u0), f(R, u0) = g(R, u0)
Take any (R, u0) and let u∗ = f(R, u0)

i. Consider the following affine transformation and let R′ be the set of (u′
1, u

′
2)

defined below ((u1, u2) ∈ R)
u′

1 = u1

2(u∗1−u0
1)

− u0
1

2(u∗1−u0
1)

u′
2 = u2

2(u∗2−u0
2)

− u0
2

2(u∗2−u0
2)

ii. (Problem) Show that under the transformation defined above,
• (u∗1, u∗2) is transformed to (1/2, 1/2)
• (u0

1, u
0
2) is transformed to (0, 0)

iii. Therefore, f(R′, (0, 0)) = (1/2, 1/2) and by axiom 3 (Preservation under Strictly
Increasing Affine Transformation), it is sufficient to show g(R′, (0, 0)) = (1/2, 1/2)

iv. For each u′ = (u′
1, u

′
2) ∈ R′ it can be shown that u′

1 + u′
2 ≤ 1 has to hold.

• Suppose u′
1 + u′

2 > 1 for some (u′
1, u

′
2)

• For a small ε, 0 ≤ ε ≤ 1, consider (1 − ε)(1/2, 1/2) + ε(u′
1, u

′
2)

• (Problem) Show that this point lies in R′

• (Problem) Show that for sufficiently small ε the product of the two coordi-
nates of this point exceed 1/4

• This contradicts f(R′, u0) = (1/2, 1/2).
v. Let T be any triangle that is symmetric with respect to the 450 line and contains

R′ and that (1/2, 1/2) is Pareto optimal within T . Because R is bounded, such
T must exist. By Pareto optimality and symmetry, g(T, (0, 0)) = (1/2, 1/2).
R′ ⊆ T and (0, 0), (1/2, 1/2) ∈ R′, which implies (by independence of irrelevant
alternatives g(R′, (0, 0)) = (1/2, 1/2).
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