Problem Set 1

1. For the following bargaining games, find the Nash bargaining solution by (a) solving the maximization problem and by (b) using only the four axioms.
(a) R is the closed region inside the triangle with vertices $(0,0),(9,0),(0,6)$ and the disagreement point is $u^{0}=(0,0)$
(b) R is the closed region inside the triangle with vertices $(0,0),(9,0),(0,6)$ and the disagreement point is $u^{0}=(3,2)$
(c) R is the closed region inside the triangle with vertices $(0,0),(8,0),(0,8)$ and the disagreement point is $u^{0}=(2,1)$
(d) R is the closed region inside the quadrilateral with vertices $(0,0),(0,6),(6,3),(8,0)$ and the disagreement point is $(0,0)$
(e) R is the closed region inside the quadrilateral with vertices $(0,0),(0,6),(6,3),(8,0)$ and the disagreement point is $(2,2)$
2. Proof of the Existence and Uniqueness of the Nash Bargaining Solution Nash's Theorem
There is only one solution $f: B \rightarrow \Re^{2}$ that satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation B nd Independence of Irrelevant Alternatives. Moreover, for any $\left(R, u^{0}\right), f\left(R, u^{0}\right)$ solves

$$
\max \left\{\left(u_{1}-u_{1}^{0}\right)\left(u_{2}-u_{2}^{0}\right) \mid\left(u_{1}, u_{2}\right) \in R, u_{1} \geq u_{1}^{0}, u_{2} \geq u_{2}^{0}\right\}
$$

and the solution $\left(u_{1}, u_{2}\right)$ to the above maximization problem is unique. This f is called the Nash bargaining solution
Let B be the set of bargaining problems $\left(R, u^{0}\right)$ such that

- R is a convex and compact subset of \Re^{2}
- $u^{0}=\left(u_{1}^{0}, u_{2}^{0}\right) \in R$.
- There is a $\left(u_{1}, u_{2}\right) \in R$ such that $u_{1}>u_{1}^{0}, u_{2}>u_{2}^{0}$
(Proof)
(a) Let f be a function such that for each $\left(R, u^{0}\right), f\left(R, u^{0}\right)$ is the solution to the maximization problem above. To show that f above is well-defined as a function (i.e. $f\left(R, u^{0}\right)$ is single-valued for each $\left.\left(R, u^{0}\right)\right)$

Let $H\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{1}^{0}\right)\left(u_{2}-u_{2}^{0}\right)$ and let $R^{\prime}=\left\{u \in R \mid u_{1} \geq u_{1}^{0}, u_{2} \geq u_{2}^{0}\right\}$
Because R is compact, R^{\prime} is also compact
Because H is a continuous function on R^{\prime}, H attains a maximum on R^{\prime}
(Problem) Prove the following statements.
i. If $s *=\left(s *_{1}, s *_{2}\right)$ is a maximizer for H on R^{\prime}, then $s *_{1}>u_{1}^{0}$ and $s *_{2}>u_{2}^{0}$
ii. R^{\prime} is convex
iii. There is only one such $s *=\left(s *_{1}, s *_{2}\right)$; therefore f is a well-defined function (Hint)Suppose there is another maximizer $t *=\left(t *_{1}, t *_{2}\right)$ in R^{\prime}, that is different from $s *$; define $r *=\left(r *_{1}, r *_{2}\right)=\left(\left(s *_{1}+t *_{1}\right) / 2,\left(s *_{2}+t *_{2}\right) / 2\right)$
Show that $H\left(r *_{1}, r *_{2}\right)>H\left(s *_{1}, s *_{2}\right)$ and $\left(r *_{1}, r *_{2}\right) \in R^{\prime}$, which contradicts the maximality of $s *$
(b) (Problem) Show that f satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation B nd Independence of Irrelevant Alternatives.
(c) To show that f is the unique solution that satisfies the four axioms:

Let $g: B \rightarrow \Re^{2}$ be another solution that satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation, and Independence of Irrelevant Alternatives.

It is sufficient to show that for each $\left(R, u^{0}\right), f\left(R, u^{0}\right)=g\left(R, u^{0}\right)$
Take any $\left(R, u^{0}\right)$ and let $u *=f\left(R, u^{0}\right)$
i. Consider the following affine transformation and let R^{\prime} be the set of $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$ defined below $\left(\left(u_{1}, u_{2}\right) \in R\right)$

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{u_{1}}{2\left(u *_{1}-u_{1}^{0}\right)}-\frac{u_{1}^{0}}{2\left(u *_{1}-u_{1}^{0}\right)} \\
& u_{2}^{\prime}=\frac{u_{2}}{2\left(u *_{2}-u_{2}^{0}\right)}-\frac{u_{2}^{0}}{2\left(u *_{2}-u_{2}^{0}\right)}
\end{aligned}
$$

ii. (Problem) Show that under the transformation defined above,

- $\left(u *_{1}, u *_{2}\right)$ is transformed to $(1 / 2,1 / 2)$
- $\left(u_{1}^{0}, u_{2}^{0}\right)$ is transformed to $(0,0)$
iii. Therefore, $f\left(R^{\prime},(0,0)\right)=(1 / 2,1 / 2)$ and by axiom 3 (Preservation under Strictly Increasing Affine Transformation), it is sufficient to show $g\left(R^{\prime},(0,0)\right)=(1 / 2,1 / 2)$
iv. For each $u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in R^{\prime}$ it can be shown that $u_{1}^{\prime}+u_{2}^{\prime} \leq 1$ has to hold.
- Suppose $u_{1}^{\prime}+u_{2}^{\prime}>1$ for some $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$
- For a small $\epsilon, 0 \leq \epsilon \leq 1$, consider $(1-\epsilon)(1 / 2,1 / 2)+\epsilon\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$
- (Problem) Show that this point lies in R^{\prime}
- (Problem) Show that for sufficiently small ϵ the product of the two coordinates of this point exceed $1 / 4$
- This contradicts $f\left(R^{\prime}, u^{0}\right)=(1 / 2,1 / 2)$.
v. Let T be any triangle that is symmetric with respect to the 45^{0} line and contains R^{\prime} and that $(1 / 2,1 / 2)$ is Pareto optimal within T. Because R is bounded, such T must exist. By Pareto optimality and symmetry, $g(T,(0,0))=(1 / 2,1 / 2)$. $R^{\prime} \subseteq T$ and $(0,0),(1 / 2,1 / 2) \in R^{\prime}$, which implies (by independence of irrelevant alternatives $g\left(R^{\prime},(0,0)\right)=(1 / 2,1 / 2)$.

