Problem Set 1

- 1. For the following bargaining games, find the Nash bargaining solution by (a) solving the maximization problem and by (b) using *only* the four axioms.
 - (a) R is the closed region inside the triangle with vertices (0,0), (9,0), (0,6) and the disagreement point is $u^0 = (0,0)$
 - (b) R is the closed region inside the triangle with vertices (0,0), (9,0), (0,6) and the disagreement point is $u^0 = (3,2)$
 - (c) R is the closed region inside the triangle with vertices (0,0), (8,0), (0,8) and the disagreement point is $u^0 = (2,1)$
 - (d) R is the closed region inside the quadrilateral with vertices (0,0), (0,6), (6,3), (8,0)and the disagreement point is (0,0)
 - (e) R is the closed region inside the quadrilateral with vertices (0,0), (0,6), (6,3), (8,0)and the disagreement point is (2,2)
- 2. Proof of the Existence and Uniqueness of the Nash Bargaining Solution Nash's Theorem

There is only one solution $f: B \to \Re^2$ that satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation **B** nd Independence of Irrelevant Alternatives. Moreover, for any (R, u^0) , $f(R, u^0)$ solves

$$max\{(u_1 - u_1^0)(u_2 - u_2^0) | (u_1, u_2) \in R, u_1 \ge u_1^0, u_2 \ge u_2^0\}$$

and the solution (u_1, u_2) to the above maximization problem is unique. This f is called the Nash bargaining solution

Let B be the set of bargaining problems (R, u^0) such that

- R is a convex and compact subset of \Re^2
- $u^0 = (u_1^0, u_2^0) \in R$.
- There is a $(u_1, u_2) \in R$ such that $u_1 > u_1^0, u_2 > u_2^0$

(a) Let f be a function such that for each (R, u^0) , $f(R, u^0)$ is the solution to the maximization problem above. To show that f above is well-defined as a function (i.e. $f(R, u^0)$ is single-valued for each (R, u^0))

> Let $H(u_1, u_2) = (u_1 - u_1^0)(u_2 - u_2^0)$ and let $R' = \{u \in R | u_1 \ge u_1^0, u_2 \ge u_2^0\}$ Because R is compact, R' is also compact

Because H is a continuous function on R', H attains a maximum on R' (Problem) Prove the following statements.

- i. If $s^* = (s^{*}_1, s^{*}_2)$ is a maximizer for *H* on *R'*, then $s^{*}_1 > u_1^0$ and $s^{*}_2 > u_2^0$
- ii. R' is convex
- iii. There is only one such $s* = (s*_1, s*_2)$; therefore f is a well-defined function (Hint)Suppose there is another maximizer $t* = (t*_1, t*_2)$ in R', that is different from s*; define $r* = (r*_1, r*_2) = ((s*_1 + t*_1)/2, (s*_2 + t*_2)/2)$ Show that $H(r*_1, r*_2) > H(s*_1, s*_2)$ and $(r*_1, r*_2) \in R'$, which contradicts the maximality of s*

- (b) (Problem) Show that f satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation B nd Independence of Irrelevant Alternatives.
- (c) To show that f is the unique solution that satisfies the four axioms:

Let $g: B \to \Re^2$ be another solution that satisfies Pareto optimality, Symmetry, Preservation under Strictly Increasing Affine Transformation, and Independence of Irrelevant Alternatives.

It is sufficient to show that for each (R, u^0) , $f(R, u^0) = g(R, u^0)$ Take any (R, u^0) and let $u* = f(R, u^0)$

i. Consider the following affine transformation and let R' be the set of (u'_1, u'_2) defined below $((u_1, u_2) \in R)$

$$u_1' = \frac{u_1}{2(u*_1 - u_1^0)} - \frac{u_1'}{2(u*_1 - u_1^0)}$$
$$u_2' = \frac{u_2}{2(u*_2 - u_2^0)} - \frac{u_2'}{2(u*_2 - u_2^0)}$$

- ii. (Problem) Show that under the transformation defined above,
 - (u_{1}, u_{2}) is transformed to (1/2, 1/2)
 - (u_1^0, u_2^0) is transformed to (0, 0)
- iii. Therefore, f(R', (0,0)) = (1/2, 1/2) and by axiom 3 (Preservation under Strictly Increasing Affine Transformation), it is sufficient to show g(R', (0,0)) = (1/2, 1/2)
- iv. For each $u' = (u'_1, u'_2) \in R'$ it can be shown that $u'_1 + u'_2 \leq 1$ has to hold.
 - Suppose $u'_1 + u'_2 > 1$ for some (u'_1, u'_2)
 - For a small $\epsilon, 0 \le \epsilon \le 1$, consider $(1 \epsilon)(1/2, 1/2) + \epsilon(u'_1, u'_2)$
 - (Problem) Show that this point lies in R'
 - (Problem) Show that for sufficiently small ϵ the product of the two coordinates of this point exceed 1/4
 - This contradicts $f(R', u^0) = (1/2, 1/2)$.
- v. Let T be any triangle that is symmetric with respect to the 45^0 line and contains R' and that (1/2, 1/2) is Pareto optimal within T. Because R is bounded, such T must exist. By Pareto optimality and symmetry, g(T, (0,0)) = (1/2, 1/2). $R' \subseteq T$ and $(0,0), (1/2, 1/2) \in R'$, which implies (by independence of irrelevant alternatives g(R', (0,0)) = (1/2, 1/2).