What is Game Theory?

A theory of decision making with multiple agents in which an agent's action affects the outcome to another agent → game situation

Two Branches of Game Theory

Non-cooperative Game Theory

No communication is allowed among agents. Each agent chooses his/her action independently. (e.g. price competition among firms)

Cooperative Game Theory

Communication is allowed.

Contract is signed once an agreement is reached.

 \rightarrow Agreement is binding.

(e.g. mergers, negotiation among countries)

Representing A Game Situation

Strategic Form Game (Normal Form Game)Decision makerPlayerA contingent plan of actionStrategyEach agent's valuation of an outcomePayoff

Extensive Form Game Each player's actions in time are represented by a tree form.

Characteristic Function Form Game (Coalitional Game) Main Representation of Cooperative Game Situations

History of Game Theory

J. von Neumann and O. Morgenstern

"Theory of Games and Economic Behavior" (1944)

2-person zero-sum games \rightarrow **Non-cooperative**

Strategic Form Games, Extensive Form Games "Minimax Thm"

2-person nonzero-sum games → Cooperative Games in Characteristic Function Form Games with 3 or more players → Cooperative

"Stable Set"

J.F. Nash (1994 Nobel Laureate)

2-person zero-sum game \rightarrow **Non-cooperative** "Nash equilibrium" Games with 3 or more players

2 person nonzero-sum games → Cooperative Bargaining Game "Nash Bargaining Solution"

Developments in Game Theory

Bounded Rational

Incomplete information \rightarrow Games with incomplete information

J.C. Harsanyi (1994 Nobel Laureate)

Simple decision making \rightarrow Evolutionary game theory, Finite automata, Neural network, Experimental game theory

Unification of Cooperative Game Theory and Noncooperative Game Theory

Game Theory and Related Fields

Overview of this Course

Cooperative Games

Two-person cooperative games Bargaining game Nash bargaining solution Cooperative games with three or more players Games in characteristic function form Core, Nucleolus, Shapley value

Example 2–2

Noncooperative game

 \rightarrow (X, X), (Y, Y) Nash equilibria

Cooperative

→ What if A and B are able to communicate with each other?

Correlated Strategy

	В	X		Y			
	А						
	Х	6	4	0	0		
	Y	0	0	4	6		
A , B	can coordinate their actions,						
	both play strategy X (payoff 6, 4),						
or both play Y (payoff 4, 6) or							
using a fair coin (probability that heads comes up is $\frac{1}{2}$)							
if the coin lands heads, A plays X, B plays X,							
and if the coin lands tails, A plays Y, B plays Y							
expected payoff (5, 5)							

 \rightarrow correlated strategy

Feasible Payoffs under Correlated Strategies

Correlated strategy:

Let r_{11} , r_{12} , r_{21} , r_{22} be the respective probabilities that (X, X), (X, Y), (Y, X), (Y, Y) will be played:

 $\mathbf{r}_{11} + \mathbf{r}_{12} + \mathbf{r}_{21} + \mathbf{r}_{22} = 1, \quad \mathbf{r}_{11}, \ \mathbf{r}_{12}, \ \mathbf{r}_{21}, \mathbf{r}_{22} \ge 0$

Exp. payoff: A $u_A = 6r_{11} + 0r_{12} + 0r_{21} + 4r_{22} = 6r_{11} + 4r_{22}$

B $u_B = 4r_{11} + 0r_{12} + 0r_{21} + 6r_{22} = 4r_{11} + 6r_{22}$

Feasible Set

Exp. payoff: A $u_A = 6r_{11} + 0r_{12} + 0r_{21} + 4r_{22} = 6r_{11} + 4r_{22}$ B $u_B = 4r_{11} + 0r_{12} + 0r_{21} + 6r_{22} = 4r_{11} + 6r_{22}$ $r_{11} + r_{12} + r_{21} + r_{22} = 1$, r_{11} , r_{12} , r_{21} , $r_{22} \ge 0$

B's payoffs u_B

Bargaining Game

Which payoff vector (or outcome) in the feasible set should players A and B agree on?

Disagreement Point (an outcome that results when negotiations between A and B break up)

(e.g. maximin value, Nash equilibrium)

Bargaining Game

Feasible Set R, Disagreement point (u_A^0, u_B^0)

 \rightarrow What will be the agreement point (u_A^*, u_B^*) ?

Applications: Price negotiations, Wage negotiations, Disarmament

Bargaining Game (R, $u^0 = (u^0_A, u^0_B)) \rightarrow$

 $u^* = (u^*_A, u^*_B)$ should satisfy the following four properties

- 1 Pareto optimality (or Pareto efficiency)
- 2 Symmetry
- 3 Independence of Strictly Positive Affine Transformation
- 4 Independence of Irrelevant Alternatives (IIA)
- \rightarrow Only one $u^* = (u^*_A, u^*_B)$ that satisfies 1-4 exists and

$$(u_{A}^{*}-u_{A}^{0}) \times (u_{B}^{*}-u_{B}^{0})$$

= Max {(u_{A}^{-}-u_{A}^{0}) \times (u_{B}^{-}-u_{B}^{0}) | u_{A}^{} \ge u_{A}^{0}, u_{B}^{} \ge u_{B}^{0}}}

Nash bargaining solution

Example 5-1

Pareto Optimality

At the agreement point, if one player's payoff is increased, the other player's payoff has to decrease as a result.

Symmetry

If both players receive the same payoffs at the disagreement point and if the feasible set is symmetric with respect to the 45° line, then both players' payoffs at the agreement point are equal.

Nash Bargaining Solution of Ex 5-1

Nash bargaining solution is (5, 5) by Pareto optimality and symmetry

Independence of Strictly Positive Affine Transformation (1)

The agreement point should not depend on the units and intervals in which payoffs are measured

В	Σ	K		Y	
Α					Units : A: ¥ (100 million)
Χ	6	4	0	0	B: ¥ (100 million)
Y	0	0	4	6	
B A	X		Y		 A's payoffs are now in dollars (1\$=200¥) B's payoffs are increased by 1
X	3	5	0	1	
Y	0	1	2	7	Units : A: \$ (1 million) B: ¥ (100 million)

Independence of Strictly Positive Affine Transformation (2)

Independence of Irrelevant Alternatives (IIA)

Even if a region that does not include the agreement point and the disagreement point are excluded from the feasible set, then the agreement point of the new set is the same.

 \mathbf{u}_{B}

Calculating Nash Bargaining Solution (Ex. 5-1)

Ex. 5-1 : From Pareto optimality and symmetry (5, 5)

Generally: Set of Pareto optimal payoffs $u_A + u_B = 10, 4 \le u_A, u_B \le 6$

$$(u_A - u_A^0)(u_B - u_B^0) = (u_A - 12/5)(10 - u_A - 12/5)$$

= $-u_A^2 + 10u_A - 456/25 = -(u_A - 5)^2 + 169/25$

maximum attained when $u_A = u_B = 5$ \rightarrow Nash bargaining solution (5, 5)

Problems with IIA

Nash's approach

A, B choose their demands x_A , x_B simultaneously If $(x_A, x_B) \in R$, then A receives x_A , B receives x_B If not, A receives u_A^0 , B receives u_B^0

Rubinstein's approach

Player A first proposes a payoff vector (x_A, x_B) to player B

Player B either can accept this offer; A receives x_A , B receives x_B

Multiple Nash equilibria

If B rejects, B can now propose a different (x_A, x_B) to A

A chooses whether to accept or reject

Discount factor $\rightarrow 1$

 \Rightarrow Subgame perfect equilibrium \rightarrow Nash bargaining solution

Transferable Utility and Side Payment Χ B Y A Χ 6 4 0 0 0 0 2 6 A, B can receive (6, 4)Y and redistribute the total u_B Feasible Set Feasible Set is Larger (2, 6)(6, 4)(0, 0)u_A

TU game and NTU game

Utility is increasing in proportion to the amount of money

→ Transferrable utility

(money as a medium of transfer)

Side Payement is possible

TU game : Transferrable utility,

Side payment is allowed

NTU game

Assignment due Next Lecture

Reading assignment

"Introduction to Game Theory": pp.139 -158
("Game Theory": pp.257 - 271)
Handout: Two-person Bargaining Game
Problem Set 1: #2

Homework

Problem Set 1: #1(a),(b),(c)

(Use A4-size paper,

and staple on the upper left-hand side)