Rural Telecommunication Development in Indonesia

case study :

(Progress of Satellite Implementation and "Future Works")

Presented by Risvan Dirza (09R12111)

E-mail : ris_frans87@yahoo.com YSEP-Research Student Fujita Laboratory Department of Mechanical and Control Engineering. Tokyo Institute of Technology

Tokyo, January 21th 2010

<u>Outline</u>

• BACKGROUND

• **OBJECTIVE**

O CURRENT CONDITION

Telecommunication & Telecommunication Services in Indonesia

(Satellite, Infrastructure, VSAT, E-Health, E-Learning etc)

O EVALUATION

(Data Progress & Problems to Tackle)

© PROPOSED SOLUTION (HAPS)

(Why HAPS?, Illustration & Challenges)

© CLOSING

<u>Background (1)</u>

Geography :

- 1. Over 17,000 islands, 6,000 inhabited
- 2. Comparing on a mp of the US, Indonesia would stretch from New York to San Francisco.
- 3. Located on the circumference of the Pacific Volcano.
- 4. Bordered by the ocean and continental plates.

Climate :

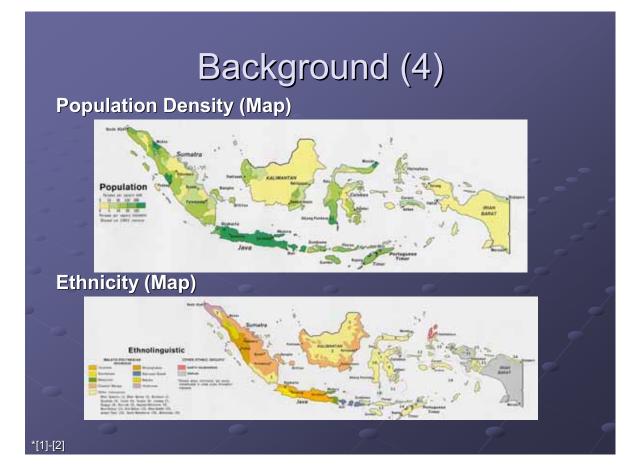
- 1. Tropical, considerable areas of rain forest.
- 2. Monsoon rains and broadleaf trees make satellite and cellular communication difficult.

EASY TO SEE :

• TERRESTRIAL INFRASTRUCTURE SHOULD BE APPROPRIATE WITH THOSE CONDITION.

<section-header><section-header><section-header><section-header><figure><section-header>

Background (3)

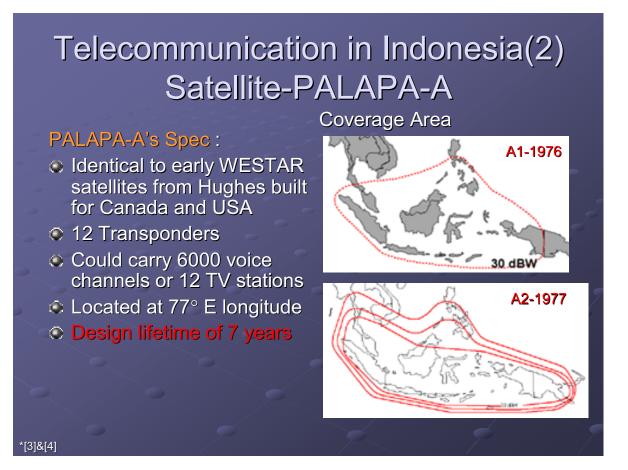

Population, Ethnicity and Language:

- 1. Around 240 million people (4th)
- 2. More than 65% live in Sumatera & Java
- 3. Rural Areas : < 13 people/km²!!
- 4. Over 250 distinct ethnic populations, most with their own language or dialect. "Bahasa Indonesia" is the official language for government and commerce
- 5. 70% Rural population

EASY TO SEE :

COMMUNICATION IS IMPORTANT!!

*[1]-[2]



<u>Objective</u>

- To provide the basic telecommunication infrastructure associated basic telecommunication services within none severed areas (majority rural areas)
- To provide new telecommunication service such as e-education, e-health, eadministration and e-business in the rural areas as well.

<u>Telecommunication in Indonesia(1)</u> Satellite

- Satellites are essential for these wide coverage area.
- Indonesia has launched serial satellite
 - (named PALAPA-A, PALAPA-B, PALAPA-C, and PALAPA-D)
 - and developed many ground infrastructure.

Telecommunication in Indonesia(3) Satellite-PALAPA-B

PALAPA-B's Spec :

- 24 Transponders, each can carry 1000 voice channels or 1 TV station
- Operates in the C-band 3.7 6.4 GHz, EIRP 34 dBW

Serial Launching :

B1 Launched in June 1983

B2 Launched February 1984 – Faulty perigee kick motor, \$75 million insurance claim

B2P Launched March 1987

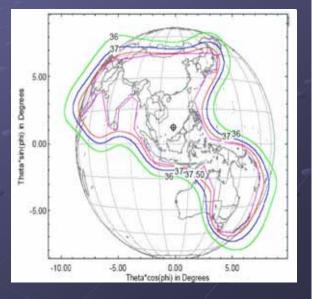
- B2 Recovered by a US space shuttle crew and resold to Indonesia. Relaunched as B2R in April 1990
- B4 Launched May 1992

*[3]&[5]

Telecommunication in Indonesia(4) Satellite-PALAPA-C

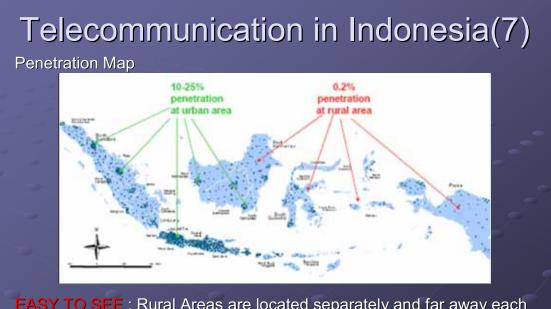
- C1 Launched Jan 1996, C2 Launched May 1996
- 30 C-Band (24 active, 6 spare) transponders, 37 dBW EIRP
- 4 Ku-Band transponders, 50dBW EIRP
- Unfolds to 21m in length, Solar panels provide 3700 W of power

Telecommunication in Indonesia(5) Satellite-PALAPA-D


Launched 31 August 2009.

Spec:

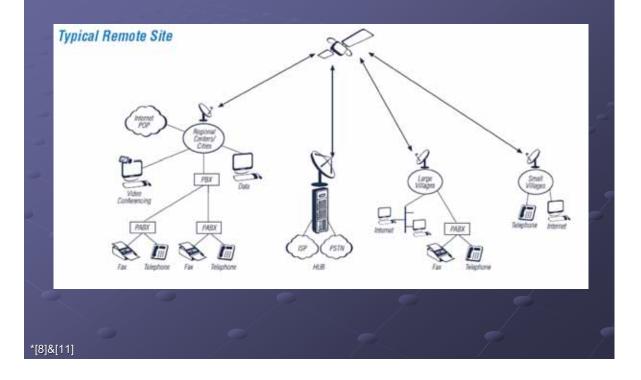
- 35 C-Band (24 standart, 11 extended) transponders.
- 5 Ku-band transponders
- Payload power = 6000 W.
- Lifetime 15 years (guaranteed)


Coverage Area :

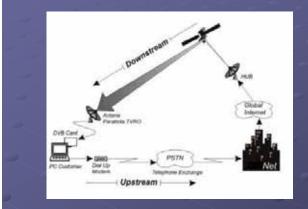
Indonesia, ASEAN, Asia Pacific, Middle East and Australia.

*[3]&[7]

Decomposition of the providence of the



EASY TO SEE : Rural Areas are located separately and far away each other.


Terrestrial Infrastructure should has wide sensing area or should be in tremendous number AND Commercially Viable

*[8]

Telecommunication in Indonesia(8)

Telecommunication in Indonesia(10) (One Way VSAT)

*[9]&[10]

- One-way VSAT service costs \$33 -\$270 per month including equipment rental
- Still requires a modem and phone line for upstream
- Not feasible for many rural areas

Telecommunication in Indonesia(11) (Two Way VSAT)

 Service costs \$700 - \$800 per month (satellite up and down link)

Useful for education in areas without phone lines

*[9]&[10]

Telecommunication Services

e-learning and e-education

such as spreading information through internet and mobile phone.

• e-health

such as SMS health consultation (in developing progress)

C e-administration and e-business

such as a transaction through the internet

(All of those services hopely, be implemented in rural areas)

*[11]-[14]

Progress

Improving but Slowly !!

						_
	Phones /100	Cell Phones	Internet Hosts	PCs /100	Internet Users	
		/100	/10000		/10000	2
Indonesia	3.6	5.5	2.2	1.1	191	
China	16.7	16.1	0.68	1.9	460	
Malaysia	19.8	34.9	21.1	12.6	2731	9
Philippines	4.2	17.8	3.9	2.2	255	
Singapore	46.4	79.2	479	50.8	5396	

*[11]-[15]

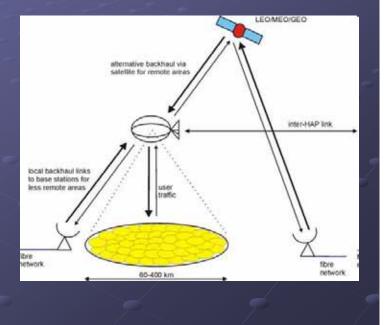
Problems to Tackle

- Satellites are expensive in this case
- Terrestrial or Ground Infrastructure are always in danger of earthquake or another disaster.
- Indonesia's Island are located separately (by the wide ocean) and Rural area are also formed separately.
- The growth rate are slower than the other country (in fact)
- © Rural Areas are not commercially viable.

Proposed Solutions (Future Technology)

HAPS (High Altitude Platform Station)

Why HAPS


- Safe from earthquake or another terrestrial disaster.
- Coverage more area than another terrestrial station/infrastructure for each unit (780.000 km²)(Radius 500 km).
 Smaller than Satellite but Effective.
- Related to the above statement, HAPS will be cheaper than satellite.
- Suitable for broadband technology
- High Mobility (has a motor inside to move to the other area)
 - 1. Helpful whether there is a disaster which destroy another terrestrial infrastructure or
 - 2. Overcoming the geographically problem, such as mountainous, ocean etc.
 - 3. Could be profitable for business point of view.
- In transition era, HAPS can be used as a moveable station
- In targeted era, HAPS will replace satellite role.

*[16]&[20]

Illustration(1)

Transition Era

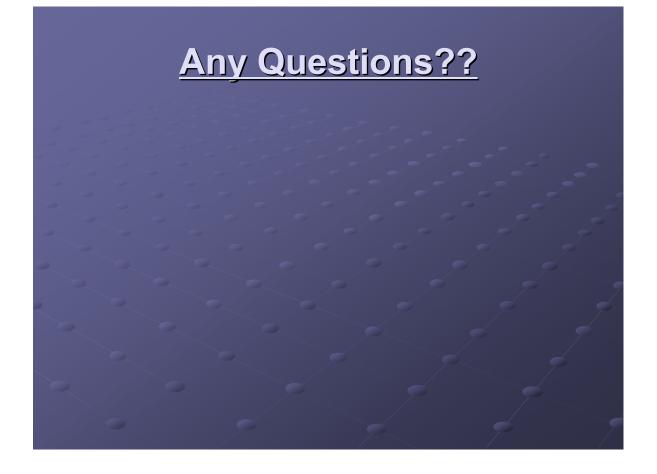
- Signal from the other source, will be transmitted through satellite to HAPS
- Terrestrial Station could send signal directly to HAPS without using the satellite

Illustration(2)

Targeted Era

Number of HAPSs will work together and share information each other

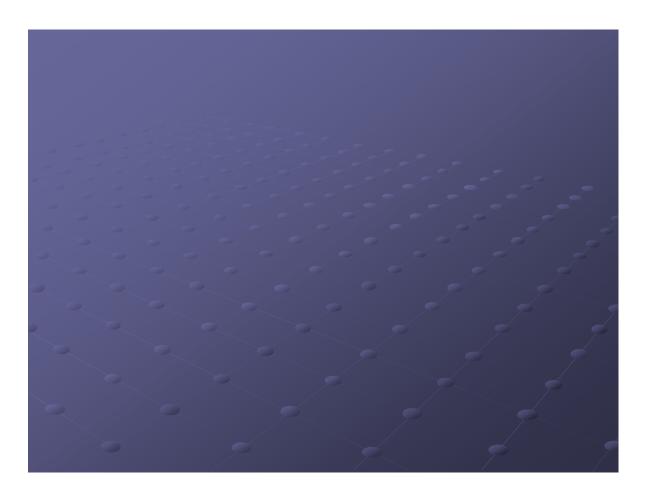
This strategy, expectedly, is able to increase the number of The Growth Rate of Rural Telecommunication in Indonesia


*[16]&[20]

*[16]&[20]

Challenges

- The motor inside HAPS should be powerful enough to control any air disturbances.
- The deployment should start from a rural area which is located around 1000 km from urban area in order to satisfy the business point of view.


References(1)

- [1] Indonesia [online]. Available:http://en.wikipedia.org/wiki/Indonesia
- [2] Department of Communication and Informatics.(2005, December 27). Profile of Indonesia [online]. Available: http://www.indonesia.go.id/
- [3] Palapa [online]. Available: http://en.wikipedia.org/wiki/Palapa
- [4] Satellite Development Center. (2000, September 01). Domestic Communications Satellite for Indonesia [online]. Available: http://www.boeing.com/defensespace/space/bss/factsheets/376/palapa_a/palapa_a.html
- [5] Satellite Development Center. (2000, September 01). Indonesia's Second Generation Satellite [online]. Available: http://www.boeing.com/defensespace/space/bss/factsheets/376/palapa_b/palapa_b.html
- [6] Satellite Development Center. (2000, September 01). Third Generation of Satellites for Indonesia [online]. Available: http://www.boeing.com/defensespace/space/bss/factsheets/601/palapa_c/palapa_c.html
- [7] Ardhi Suryadhi. (2009, August 31). Satelit Palapa-D Indosat Menuju Angkasa [online]. Available: <u>http://www.detikinet.com/</u>
- [8] Benyamin Sura., "USO:toward the Indonesia information society, Innovative Business Modelfor USO,"Department of Communication and Informatics., September. 8, 2007.
- [9] VSAT [online]. Available: <u>http://id.wikipedia.org/wiki/VSAT</u>
- [10]Arthipesa (2008, February 02). VSAT Proposal [online]. Available: http://zephyr.arthipesa.com/

References(2)

[11] http://www.technologyindonesia.com/

- [12] http://e-pendidikan.com/
- [13] Fino Yurio Kristo (2008, August 21). Apa Kendala E-Learning di Indonesia? [online]. Available: http://www.detikinet.com/
- [14] Sofyan A. Djalil.,"Teknologi Informasi untuk Kesehatan Sebagai Komunikasi Informasi Efektif bagi Daerah," Simposium Nasional"Membangun Era Informasi melalui RKE dalam Manajemen Informasi Kesehatan di Indonesia". August. 23, 2005.
- [15] Hans-Dieter Evers and Solvay Gerke, "Closing the Digital Divide: Southeast Asia's Path towards a Knowledge Society,"Centre for East and South-East Asian Studies., Lund University., Sweden., May. 25, 2004.
- [16] Centre for Communication Systems Research, University of Surrey (2005). High Altitude Platform Station: A Promising Infrastructure for Delivery of 3G and Beyond 3G Services [online]. Available FTP://ftp.cordis.europa.eu/pub/ist/docs/ka4/mob_9th_high.pdf
- [17] Agus Anugrah, Faizal Adi Wardana and Linda Agnes (2009). Implementasi HAPS di Indonesia [online]. Available: http://jartel-haps.blogspot.com/2009/05/implementasi-haps-di-indonesiarevisi.html
- [18] Agus Anugrah, Faizal Adi Wardana and Linda Agnes (2009). Arsitektur HAPS [online]. Available: http://jartel-haps.blogspot.com/2009/05/arsitektur-haps-revisi.html
- [19] Agus Anugrah, Faizal Adi Wardana and Linda Agnes (2009). High Altitude Platform System [online]. Available: http://jartel-haps.blogspot.com/2009/05/high-altitude-platform-system.html
- [20] Swiss Confederation.HAPS High Altitude Platform Stations. Available: http://www.bakom.admin.ch

