Rural Telecommunications (6) Access Technology II – Cellular Systems

Jun-ichi TAKADA

Department of International Development Engineering Tokyo Institute of Technology

Evolution of Cellular Systems

2.5G 3G 1G 2G 3.5G 4G (packet) (multimedia) (HS DL) (broadband) (analog) (digital) 2001 2011? 2006 1979 1993 1997 GSM Europe **GPRS** Local and rest analog systems UMTS/ HSDPA IMT-Advanced WCDMA => LTEPDC PDC Japan Local 3GPP LTE-WIMAX packet system Advanced VS IEEE USA AMPS **IS-95** EV-DO cdma2000 802.16m (WIMAX (cdmaOne) TACS IS-136 advanced) (TDMA)

IMT-2000

3.9G

Battle between 3GPP vs 3GPP2 for IMT-2000

- 3GPP (third generation partnership project) led by EU to standardize UMTS/WCDMA; new air interface with evolution of GSM network
- 3GPP2 (third generation partnership project II) led by Qualcomm to standardize cdma2000 and EV-DO
- WiMAX forum and IEEE 802.16 TGe contributed to standardize mobile WiMAX

- GSM = Global System for Mobile
 - European cellular standard penetrated in all over the world except Japan and Korea
 - 3 bands are used in ordinary service
 - 900 MHz
 - 1,800 MHz
 - 1,900 MHz (mainly in USA)
 - Voice and messaging (SMS)

Free Space Propagation

• Friis' Transmission Formula

- According to Friis' fomula, lower frequency can expect larger reach with same power.
- Replacement of NMT 450
 - NMT Nomadic Mobile Telephone
 - 1G analog cellular to 2G digital cellular

Advantage of GSM 400 over other GSMs

Wider coverage area
 2 W terminal for 40 km radius

– GSM 400 bites the dust – What happened to GSM 400?

- Support of both Nokia and Ericsson at the beginning
- Expectation of nationwide services though a joint GSM 400/WCDMA (2GHz) network
- Nokia and Ericsson pulled out later.
- Operators were uninterested in it.
- Manufacturers are unwilling, or in some cases unable, to supply handsets in commercial volumes until there is a perceived demand.

<u>Specific system for rural application may not be</u> <u>feasible commercially.</u>

http://www.allbusiness.com/information/telecommunications-wireless/1001913-1.html

GSM Evolution

- High Speed Circuit Switched Data (HSCSD)
 - Circuit switch
- Wireless Application Protocol (WAP)
 1.0 (original) vs 2.0 (i-mode compatible)
- General Packet Radio Service (GPRS)
 - 115 kbit/s
- Enhanced Data for GSM Evolution (EDGE)
 - 384 kbit/s

IMT-2000 (1)

- A single global standard was aimed.
- Under standardization in ITU

- Unified Systems
 - Land Mobile
 - Cordless
 - Fixed (WLL)
 - Satellite

- Unified Services
 - Voice
 - Fax
 - Data
 - Paging

IMT-2000 (2)

- Unified
 Environments
 - Mobile
 - Pedestrian
 - Indoor
 - Satellite

- Transmission Rate
 - Indoor: 2 Mbit/s
 - Mobile: 384 kbit/s

IMT-2000 (3)

- Expected to be a global standard in ITU
 - But given up
 - Single standard could not be achieved
 - Patent battles
 - W-CDMA, cdma2000, TD-CDMA, DECT, WiMAX etc.
 - To optimize the system for different environments and services, the system is with over specification.

IMT-2000 (4)

- Why was service deployment delayed?
 - GSM/GPRS was sufficient.
 - Over-specification.
 - Frequency auction
 - Operators expected too much revenue for 3G services.
 - They paid too much for license fee, and could not afford for infrastructure.

cdma450

- Same idea as GSM 400
- cdmaOne-based (2.5G)
- 180km max by parameter adjustment

Comparative CDMA Range (Not to Scale)

cdma450

- 2nd generation ⇒ 3rd generation (GSM, cdmaOne) (WCDMA, cdma2000)
- CDMA 450: 450MHz version of cdma2000
 - High quality voice
 - Data up to 153kbit/s (1x) / 2.4 Mbit/s (EV-DO)
 - Partly used as fixed
 - Candidate for replacement of NMT
 - 4-5 MHz NMT bandwidth can be used for 1.25 MHz x 3-4 frequency channels

Example

- Win Phone of LaoTel
- Fixed phone + USB adaptor

http://www.laotel.com/laotel2006/index_winphone.php

Evolution of Cellular Systems

	1G (analog)	2G (digital)	2.5G (packet)	3G (multimedia)	3.5G (HS DL)	4G (broadband)
	1979	1993	1997	2001	2006	2011?
Europe and rest	Local analog systems	GSM	GPRS	UMTS/	HSDPA	IMT-
Japan	Local system	PDC	PDC packet	WCDMA	=> LTE (3.9G)	3GPP LTE vs
USA	AMPS		IS-95	cdma2000	EV-DO	IEEE
	TACS	IS-136 (TDMA)	(cdmaOne)			002.1011

Why is 2G system still alive?

- Big demand in developing world
- Global roaming
- Voice and SMS still sufficient
 - Video call (typical application of 3G) is not needed.
 - Operators are doing good business with voice and SMS.
- High speed data fee still very high
- Cost: SMS is cheaper than voice (sometimes free)
- Investment for 3G network (replacement) is large.
- Terminal is cheaper; terminals with minimum feature, secondhand market, large number of products
- Data terminal in 3G needs large size; it is in contradiction to small, lightweight and cheap terminal.

Why is 2G system still alive? Class opinion

- 3G is specifically used for data and voice is not encouraged to transmit; 2G is sufficient for voice. (Indonesia)
- Voice and message are sufficient for communications
- For rural applications, 3G terminals are still expensive.

Repeater (1)

 Repeater system is installed within BTS cell. It amplifies the weak RF signal from the BTS to the designed area and vice versa.

http://www.wtw.jp/tu/TU-TI-RF-2-J.htm

Repeater (2)

- The population density in their licensed coverage areas is low enough so that most base stations will be underused.
- High-powered CDMA repeaters have provided the carriers with the means to cost-effectively deploy CDMA networks in their rural BTAs.
- They used the approach to design their networks with a combination of base stations and repeaters, which is known as a hybrid network.
- CDMA networks operate using a 1:1 frequency-reuse scheme. Consequently, there is no requirement for frequency-reuse planning. Repeaters can be used anywhere in the network.