

Primary Factors controlling Brittle Fracture : 1

- 1) Material toughness (Kc, KIc, KId= $C\sigma\sqrt{a}$)
 - the ability to carry load or deform plastically in the presence of notch
 - for slow loading and linear -elastic behavior.
 - K_c :under conditions of plane stress
 - K_{Ic} :plane strain
 - impact or dynamic loading
 - ${}^{\bullet}$ K_{\rm Id} : under condition of maximum constraint (plane strain)
 - For elastic-plastic behavior
 - R-curve resistance, J_{Ic}, and CTOD

.

Primary Factors controlling Brittle Fracture : 2

- 2) Crack size (a)

 Brittle ftacture initiate from discontinuities varying from small cracks within a weld ark strike (case in a T-2 tanker) to much larger fatigue cracks.
- 3) Stress level (σ): Tensile stress are necessary for brittle failure to occur.
- Brittle failure can occur without all three factors being present if the other factors are sufficiently severe.
- Other factors such as temperature, loading rate, stress concentration, residual stress, and so on will affect the three primary factors

Exar	J.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Consider a th crack in a wid	s -	$F \cdot \sigma \sqrt{2}$	$\overline{u} \leq K_c$		
design stress	design stress is 38MPa ,310MPa 📲 🛖				
$K_I = \sigma \sqrt{\pi a}$	$K_1 = \sigma \sqrt{\pi a}$ $K_c = 66,132 M P a \sqrt{m}$				
what is the to	what is the tolerable flaw size?				
If residual stresses due to					
welding present so that the total					
Stress is 552	viPa at the crac	CK.	Fiew size 2a	1	
		Kc=66	Kc=132		
	σ=138 MPa	2a=145mm	291		
	σ=310	27.9	57.7		
	σ=552	4.6	18.2	8	

Griffith Theory
Consider an plate contains a through-thickness crack of length 2a and that is subjected to uniform tensile stress σ . The total potential energy of the system, U is written as
$U = U_o - U_a + U_\gamma$ $U_o: elastic energy of the unclacked plate$ $U_a = \frac{\pi \sigma^2 a^2}{E}: decrease in elastic energy caused by the crack$ $U_\gamma: 2(2a\gamma_e): elastic surface energy by the formation of the crack surface$
$\frac{\partial U}{\partial a} = 0 \text{const.}$ $\sigma \sqrt{a} = \left(\frac{2\gamma_{c}E}{\pi}\right)^{1/2} \text{crack extension is governed by the crack length and the material property}_{13}$

