

October 6, 2009

Electronic Materials B	Department	Laboratory	Student ID number	Name
Y. Majima				

1-1 Calculate a phase velocity v of plane wave by substituting the wave function

 $\psi(x) = \psi_0 \exp j(\omega t - kx)$ into the wave equation $\frac{\partial^2 \psi}{\partial t^2} = v^2 \frac{\partial^2 \psi}{\partial x^2}$.

Here, we assume one dimensional plane wave which propagates in x axis direction, where ω is the angular frequency, k is the wave vector.

1-2. When X-ray irradiates a few atomic layers of Au crystals, explain where and how X-ray is scattered in the Au crystal.

1-3. Diffraction intensity in the diffraction grating (slit width 2b, slit interval d, number of slit N) is given by

$$I = \left(\frac{2b\sin klb}{klb}\right)^2 \left(\frac{\sin\frac{Nkld}{2}}{\sin\frac{kld}{2}}\right)^2,$$

here $k = \frac{2\pi}{2\pi}$, $l = \sin\theta$

where wavenumber. $k = \frac{2\pi}{\lambda}$, $l = \sin \theta$.

Show the *klb* dependence of diffraction intensity in the figure in case of slit width 2b, d=4b and N=3.

In the figure below, the Fraunhofer diffraction (N=1) intensity with slit width 2b is shown as an example.

Copyright © 2009 Yutaka Majima TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B

No.2				April 10, 2008
Electronic	Department	Laboratory	Student ID number	Name
Materials B				
Y. Majima				

2-1. Why is the value of structure factor $F(\mathbf{k})$ experimentally observed only at scattering vector $\mathbf{k} = (\mathbf{k}_1 - \mathbf{k}_0)$ on the Ewald's sphere of reflection?

2-2. Two atoms exist distance r apart from start point O to point R on z axis as shown in figure. X-ray is incident where the normal of the wave front is in the z-x plane, the incident angle is measured as θ from x axis and the outgoing angle θ from x axis is as same as incident angle θ . 2-2-1 Give the scattering amplitude G,

2-2-2 Solve the angular dependence of diffraction intensity (I=GG*)

2-2-3 Give the angle where diffraction intensity becomes maximum values.

 \mathbf{k}_0 : wavenumber vector of incidence X-ray \mathbf{k}_1 : wavenumber vector of scattered X-ray

$$\left|\mathbf{k}_{0}\right| = \left|\mathbf{k}_{1}\right| = \frac{1}{\lambda}$$

r: positional vector of point R

$$|\mathbf{r}| = r$$

PursuingExcellence		Copyright © 2009 Yutaka Majima		TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B	
No.3					October 20, 2009
Electronic Materials B	Department	Laboratory	Student II	D number	Name

3 Answer the following question concerning reciprocal lattice of body-centered cubic (bcc) Bravais lattice and extinction rule of bcc lattice.

Q. 3-1 When we think about the reciprocal lattice of bcc lattice,

Y. Majima

the primitive vectors $\mathbf{a'}, \mathbf{b'}, \mathbf{c'}$ tend to be used rather than orthogonal unit lattice vectors of $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Explain the reason why the $\mathbf{a'}, \mathbf{b'}, \mathbf{c'}$ are used.

Body-centered cubic Bravais lattice

Q. 3-2 Give the reciprocal primitive vector of $\mathbf{a'}^*$ by using fundamental vectors of \mathbf{x} , \mathbf{y} , and \mathbf{z} . Here, $\mathbf{a} = a\mathbf{x}$, $\mathbf{b} = a\mathbf{y}$, $\mathbf{c} = a\mathbf{z}$, and the size of the vector of the unit lattice is $|\mathbf{a}| = a$,

Q. 3-3 Show the size and direction of the reciprocal primitive vector of $\mathbf{a'}^*$

Q. 3-4 Show the primitive vector of $\mathbf{a'}^*$ on the below figure by using arrow.

Q. 3-5 Show all the reciprocal-lattice points on the below figure by using dots (\bullet) .

Q. 3-6 Show the structure factor of bcc Bravais lattice by assuming reciprocal lattice vector of $\mathbf{k} (= h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)$ and positional vectors of unit cell atoms of $\mathbf{r}_1 = 0$, $\mathbf{r}_2 = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c}$

Q. 3-7 Explain the extinction rule of bcc Bravais lattice

Pursuing Excellence		Copyright © 2009 Yutaka Majima		TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B	
No.4					October 27, 2009
Electronic	Department	Laboratory	Student II	O number	Name
Materials B			-	-	
Y. Majima					

 Below figure illustrates symmetry elements of a rectangle (a two-dimensional figure). In similar fashion, illustrate all symmetry elements that a square has.
[Do not forget rotation-inversion symmetry elements.]

2. What are the symmetry elements around the "false" lattice point B in the figure below? Illustrate the symmetry elements similar as in the previous problem 1. Here, we assume that in the unit cell a=b and γ =60°.

3. What are the symmetry elements around the "true" lattice point A of the two-dimension lattice mentioned in the previous problem 2 (a=b, $\gamma = 60^{\circ}$)? [Hints: Do not forget rotation-inversion symmetry.]

TOKYO TEL

Pursuing Excellence

4. Black and white spheres are placed on the corners of a quadratic prism ($a=b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$). Illustrate the symmetry elements of the quadratic prism, similar as in the previous problem 1.

ТЦК	Pursuing Excellence	

Copyright © 2009 Yutaka Majima

TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B

November 4, 2009

No.5				November 4, 2009
Electronic Materials B	Department	Laboratory	Student ID number	Name
Y. Majima				

1. What is the product of C_3^2 and σ^c ($\sigma^c C_3^2$)? Find the answer by actually operating the elements successively (first C_3^2 and then σ^c) to the regular triangle lmn.

2. Two kinds of atoms, represented by closed and open circles, are placed on the corners of a rectangular parallel piped, as shown in right figure.

2-1 What are the symmetry elements for this system?

2-2 Draw the stereographic projection of the symmetry elements.

2-3 What point group do these elements form?

2-4 What is the order of the point group?

2-5 Draw the $\overline{2}$ axis. And show the relation between the $\overline{2}$ axis and its associated mirror plane.

2-6 The atoms are placed on the corners as shown in right figure.

What point group do these symmetry elements form?

Draw the stereographic projection of the point group.

- 3. On the symmetry elements for the system shown in right figure,
- 3-1 Draw the multiplication table.

- 3-2 Check that the elements form a group.
- 3-3 Find the sub-groups of the group.
- 3-4 Show the generating elements of the group.
- 4. The symmetry elements for a regular triangular prism (right figure) forms the point group D_{3h} ($\overline{6}2m$).

Show the symmetry elements for this point group, similar as in Question 1 in the last Exercise.

TOKYO INSTITUTE OF TECHNOLOGY Copyright © 2009 Yutaka Majima Electronic Materials B

November 10 2008

No.6				November 10, 2008
Electronic Materials B	Department	Laboratory	Student ID number	Name
V Majima				
1. wiajiiia				

6-1. In a liner chain of monatomic Bravais lattice, consider a dispersion of angular frequency ω_k against

wavenumber k of
$$\omega_k = 2\sqrt{\frac{\alpha}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$
.

Q6-1-1 Calculate k when ω_k becomes maximum (ω_k^{\max}), and show corresponding lattice vibration mode by referring the right figure.

Here the closed circles show the lattice points (atom) and the z-axe shows the displacement.

Q6-1-2 Calculate k when ω_k becomes $\frac{\omega_k^{\text{max}}}{\sqrt{2}}$, and show the corresponding lattice vibration mode by referring the above figure.

Copyright © 2009 Yutaka Majima

TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B

6-2. Consider the normal modes of a one-dimensional Bravais lattice with two atoms that fixed at the ends, with equilibrium positions of a and 2a.

Here we assume the linear chain of identical two atoms (mass m), connected by spring strength of α , and the displacements of the first and the second atoms as u_1 and u_2 , respectively.

(This problem is a part of the end-of-term examination, 2005)

6-2-1. Calculate the harmonic potential energy U

6-2-2. Calculate the equations of motion of each first and second atoms by using u_1, u_2, m, α .

6-2-3. Calculate wavenumber k and explain the relationship between A_k and B_k by substituting boundary condition of $u_0 = u_3 = 0$ into $u_l = (A_k \exp(ikla) + B_k \exp(-ikla))\exp(-i\omega_k t)$ where ω_k is angular frequency.

6-2-4. Calculate u_1 and u_2 .

6-2-5. Calculate all eigenfrequencies ω_k , and explain those fundamental vibration modes.

Copyright © 2009 Yutaka Majima TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B

December 8, 2009

No./				December 8, 2009
Electronic	Department	Laboratory	Student ID number	Name
Materials B				
Y. Majima				

7. Consider normal modes of a one-dimensional Bravais lattice with two atoms (mass *m*) per primitive cell in which the two atoms are connected by the two springs alternatively (spring constants α , β).

Here, U_n : displacement of the atom (mass m) that oscillates about the site na, u_n : displacement of the atom (mass m) that oscillates about the site $(n + \frac{1}{2})a$, and assuming $U_n = A_U \exp[i(kna - \omega t)]$, $u_n = A_u \exp[i(kna - \omega t)]$.

Q7-1 Give the equation of motion at U_n and u_n .

Q7-2 Solve the two branches of ω_{+} and ω_{-} .

Copyright © 2009 Yutaka Majima

TOKYO INSTITUTE OF TECHNOLOGY Electronic Materials B

Q7-3 Explain the two mode of vibration under the case of $\alpha > \beta$ at $k = \frac{\pi}{a}$.

Q7-4 Explain the two mode of vibration under the case of $\alpha > \beta$ at $k \to 0$.