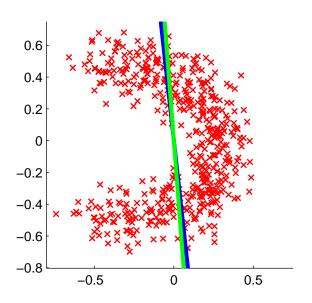
Advanced Data Analysis: Kernel PCA

Masashi Sugiyama (Computer Science)

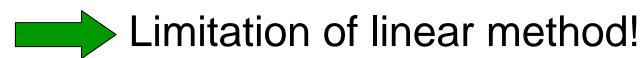
W8E-505, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Data with Curved Structures

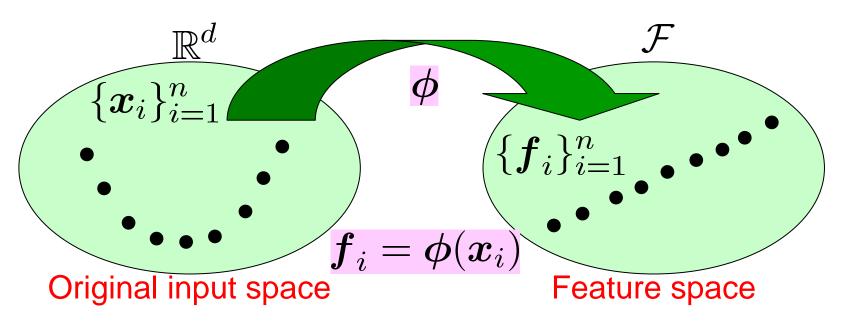


If the data cloud is bent, any linear methods cannot find the curved structure.

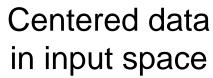


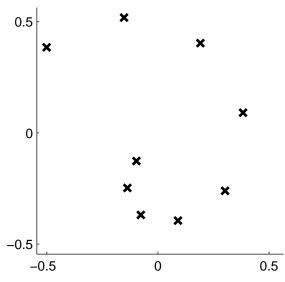
Non-Linearizing Linear Methods⁸⁴

- A simple non-linear extension of linear methods while keeping computational advantages of linear methods:
 - Map the original data to a feature space by a non-linear transformation
 - Run linear algorithm in the feature space

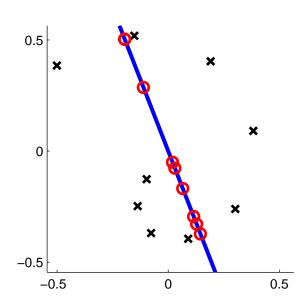


d=2





Linear PCA

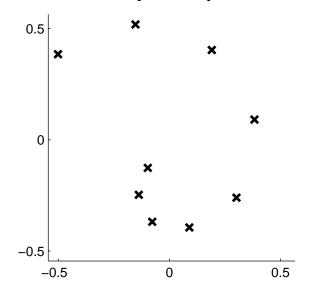


Example (cont.)

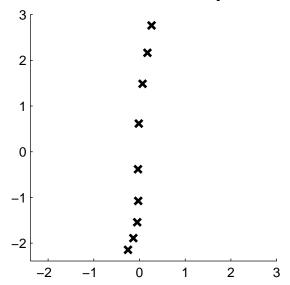
■ Polar coordinate:

$$\boldsymbol{x} = \begin{pmatrix} a \\ b \end{pmatrix} \longrightarrow \boldsymbol{f} = \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix}$$

Centered data in input space

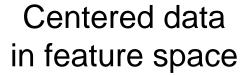


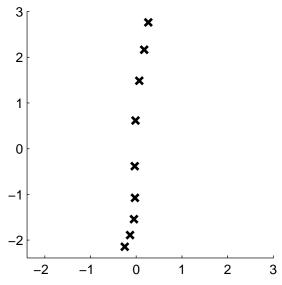
Centered data in feature space



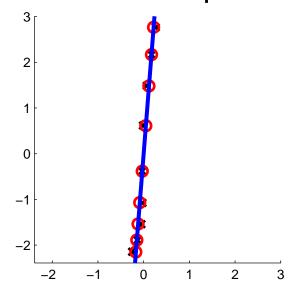
Example (cont.)

Run PCA in feature space.



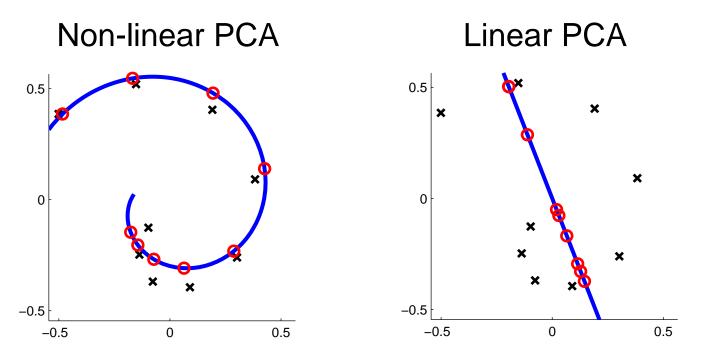


PCA projection in feature space



Example (cont.)

Pull the results back to input space.



Non-linear PCA describes the original data much better than linear PCA.

Notation Revisited

Input samples:

$$\{oldsymbol{x}_i\}_{i=1}^n \qquad oldsymbol{x}_i \in \mathbb{R}^d$$

Feature mapping:

$$oldsymbol{\phi}: \mathbb{R}^d o \mathcal{F}$$

Samples in feature space:

$$\boldsymbol{f}_i = \boldsymbol{\phi}(\boldsymbol{x}_i)$$

Centering in Feature Space

PCA requires centered samples, thus we need to center samples by

$$\overline{oldsymbol{f}}_i = oldsymbol{f}_i - rac{1}{n} \sum_{j=1}^n oldsymbol{f}_j$$

In matrix form,

$$\overline{m{F}} = m{F}m{H}$$

$$egin{aligned} oldsymbol{F} &= (oldsymbol{f}_1 | oldsymbol{f}_2 | \cdots | oldsymbol{f}_n) \ oldsymbol{\overline{F}} &= (oldsymbol{\overline{f}}_1 | oldsymbol{\overline{f}}_2 | \cdots | oldsymbol{\overline{f}}_n) \end{aligned}$$

$$oldsymbol{H} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1}_{n imes n}$$

 I_n : n-dimensional identity matrix

 $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones

PCA in Feature Space (Primal)⁹¹

$$\overline{C}\psi = \lambda\psi$$

$$\overline{oldsymbol{C}} = \overline{oldsymbol{F}} \ \overline{oldsymbol{F}}^ op$$

■PCA solution:

$$oldsymbol{B}_{PCA} = (oldsymbol{\psi}_1 | oldsymbol{\psi}_2 | \cdots | oldsymbol{\psi}_m)^{ op}$$

• $\{\lambda_i, \psi_i\}_{i=1}^m$:Sorted eigenvalues and normalized eigenvectors of $m{C}\psi=\lambda\psi$

$$\langle \boldsymbol{\psi}_i, \boldsymbol{\psi}_j \rangle = \delta_{i,j}$$

$$\langle \boldsymbol{\psi}_i, \boldsymbol{\psi}_j \rangle = \delta_{i,j}$$
 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{\mu}$

 \blacksquare PCA embedding of a sample f:

$$\overline{\boldsymbol{g}} = \boldsymbol{B}_{PCA}(\boldsymbol{f} - \frac{1}{n}\boldsymbol{F}\boldsymbol{1}_n)$$

$$\mu = \dim(\mathcal{F})$$

 $\mathbf{1}_n$: n-dimensional vector with all ones

PCA in High-Dimensional Feature Space

$$\mu = \dim(\mathcal{F})$$

- If μ is high,
 - Description ability of non-linear PCA will increase.
 - However, computational cost increases since the dimension of $\overline{\boldsymbol{C}}$ is μ .
- It would be possible to reduce computational cost since

$$rank\left(\overline{C}\right) = min(\mu, n) \le \mu$$

$$\overline{oldsymbol{C}} = \overline{oldsymbol{F}} \ \overline{oldsymbol{F}}^ op$$

$$\overline{oldsymbol{C}} = \overline{oldsymbol{F}} \, \overline{oldsymbol{F}}^ op \, \overline{oldsymbol{F}} = (\overline{oldsymbol{f}}_1 | \overline{oldsymbol{f}}_2 | \cdots | \overline{oldsymbol{f}}_n)$$

Dual Formulation

(A)
$$\overline{C}\psi = \lambda \psi$$

$$\overline{\boldsymbol{C}} = \overline{\boldsymbol{F}} \ \overline{\boldsymbol{F}}^\top$$

(B)
$$\overline{K}\alpha = \lambda \alpha$$

$$\overline{\boldsymbol{K}} = \overline{\boldsymbol{F}}^{\top} \overline{\boldsymbol{F}}$$

- Solution of (A) can be obtained from (B).
 - Proof: If α is a solution of (B), it holds that

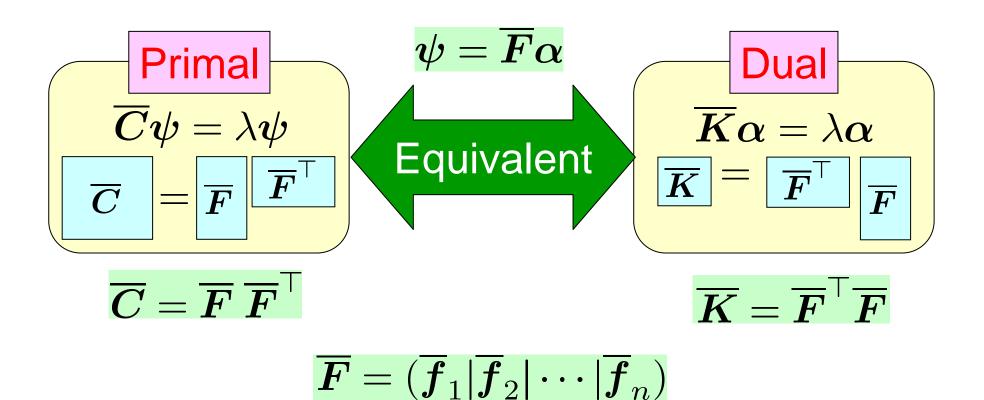
$$\overline{oldsymbol{C}} \ \overline{oldsymbol{F}} oldsymbol{lpha} = \overline{oldsymbol{F}} oldsymbol{F}^ op \ \overline{oldsymbol{F}} oldsymbol{lpha} = \overline{oldsymbol{F}} oldsymbol{K} oldsymbol{lpha} = \lambda \overline{oldsymbol{F}} oldsymbol{lpha}$$

This implies that $\psi = F \alpha$ is a solution of (A).

- Note: solution of (B) can also be obtained from (A).
- Given \overline{K} , solving (B) is faster than (A) when $\mu > n$ since

$$\operatorname{rank}\left(\overline{\boldsymbol{C}}\right) = n < \mu$$

Primal and Dual Formulations 94



Renormalization of Eigenvectors⁵

$$\overline{K}\alpha = \lambda \alpha$$

Standard eigensolvers output an orthonormal eigenvectors.

 $\langle \boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i \rangle = \delta_{i,j}$

- However, PCA requires the primal eigenvectors $\{\psi_i\}_{i=1}^m$ to be orthonormal.
- Since $\langle \psi_i, \psi_j \rangle = \langle \overline{K} \alpha_i, \alpha_j \rangle = \lambda_i \delta_{i,j}$, we need to renormalize $\{ \psi_i \}_{i=1}^m$ by

$$oldsymbol{\psi}_i \longleftarrow rac{oldsymbol{\psi}_i}{\|oldsymbol{\psi}_i\|} = rac{1}{\sqrt{\lambda_i}} \overline{oldsymbol{F}} oldsymbol{lpha}_i \ \overline{oldsymbol{K}} oldsymbol{lpha}_i = \lambda_i oldsymbol{lpha}_i$$

$$egin{aligned} oldsymbol{\psi}_i &= \overline{oldsymbol{F}} oldsymbol{lpha}_i \ \overline{oldsymbol{K}} oldsymbol{lpha}_i &= \lambda_i oldsymbol{lpha}_i \end{aligned}$$

PCA in Feature Space (Dual) 96

lacktriangleq PCA embedding of a sample f:

$$\overline{\boldsymbol{g}} = \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H} (\boldsymbol{k} - \frac{1}{n} \boldsymbol{K} \boldsymbol{1}_n)$$
 (Homework)

• $\{\lambda_i, \alpha_i\}_{i=1}^m$:Sorted eigenvalues and normalized eigenvectors of $\overline{K}\alpha=\lambda\alpha$

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \quad \langle \boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j \rangle = \delta_{i,j}$$

$$egin{aligned} oldsymbol{\Lambda} &= \operatorname{diag}\left(\lambda_1, \lambda_2, \dots, \lambda_m
ight) \ oldsymbol{A} &= \left(oldsymbol{lpha}_1 | oldsymbol{lpha}_2 | \cdots | oldsymbol{lpha}_m
ight) \ oldsymbol{\overline{K}} &= oldsymbol{H} oldsymbol{K} &= oldsymbol{F}^{ op} oldsymbol{F} \ oldsymbol{H} &= oldsymbol{I}_n - rac{1}{n} oldsymbol{1}_{n imes n} oldsymbol{k} &= oldsymbol{F}^{ op} oldsymbol{f} \end{aligned}$$

 I_n : n-dimensional identity matrix $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones

 $\mathbf{1}_n$: n-dimensional vector with all ones

PCA in Feature Space (Dual)

$$\mu = \dim(\mathcal{F})$$

- In the dual formulation, the computational complexity depends not on μ but only on n, if K and k are given.
- However, the computation of K and k still depends on μ .

$$oldsymbol{K} = oldsymbol{F}^ op oldsymbol{F}$$

Note: K and k depend on μ only through the inner product between samples.

$$oldsymbol{K}_{i,j} = \langle oldsymbol{f}_i, oldsymbol{f}_j
angle \qquad oldsymbol{k}_i = \langle oldsymbol{f}, oldsymbol{f}_i
angle$$

Kernel Trick

For some transformation $\phi(x)$ (= f), there exists a bivariate function K(x, x') such that

$$oldsymbol{K}_{i,j} = \langle oldsymbol{f}_i, oldsymbol{f}_j
angle = K(oldsymbol{x}_i, oldsymbol{x}_j)$$

- Such implicit mapping $\phi(x)$ exists if
 - ullet K is symmetric: $K^ op = K$
 - \boldsymbol{K} is positive semi-definite: $\forall \boldsymbol{y}, \ \langle \boldsymbol{K} \boldsymbol{y}, \boldsymbol{y} \rangle \geq 0$
- Such K(x, x') is called the reproducing kernel.
- Rather than directly defining $\phi(x)$, we implicitly specify $\phi(x)$ by a reproducing kernel.

Examples of Kernels

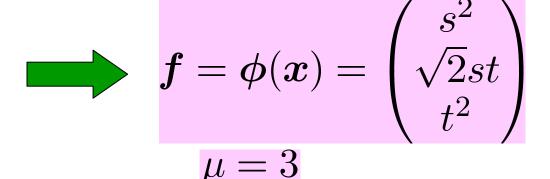
Polynomial kernel:

$$\mu = \dim(\mathcal{F})$$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \boldsymbol{x}, \boldsymbol{x}' \rangle^c$$
 $c \in \mathbb{N}$

• When d=2 and c=2,

when
$$u=2$$
 and $c=2$, $x={s\choose t}$ $x={s\choose t}$ $x={s\choose t}$ $x={s\choose t}$ $x={sss's'+2ss'tt'+ttt't'}$



In general,

$$\mu = {}_{c+d-1}C_c$$

Examples of Kernels (cont.) 100

Gaussian kernel:

$$K(x, x') = \exp(-\|x - x'\|^2/c^2)$$

c > 0

Note: $\mu = \infty$!

$$\mu = \dim(\mathcal{F})$$

Kernel PCA: Summary

lacktriangle Kernel PCA embedding of a sample f is

$$\overline{\boldsymbol{g}} = \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H} (\boldsymbol{k} - \frac{1}{n} \boldsymbol{K} \boldsymbol{1}_n)$$

• $\{\lambda_i, \alpha_i\}_{i=1}^m$:Sorted eigenvalues and normalized eigenvectors of $HKH\alpha = \lambda\alpha$

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$
 $\langle \boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j \rangle = \delta_{i,j}$

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_m)$$

$$oldsymbol{A} = (oldsymbol{lpha}_1 | oldsymbol{lpha}_2 | \cdots | oldsymbol{lpha}_m)$$

$$\boldsymbol{H} = \boldsymbol{I}_n - \frac{1}{n} \boldsymbol{1}_{n \times n}$$

 I_n : n-dimensional identity matrix

 $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones

 $\mathbf{1}_n$: n-dimensional vector with all ones

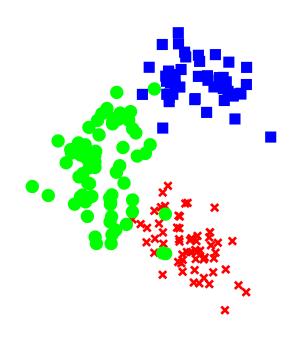
$$\boldsymbol{k} = (K(\boldsymbol{x}, \boldsymbol{x}_1), K(\boldsymbol{x}, \boldsymbol{x}_2), \dots, K(\boldsymbol{x}, \boldsymbol{x}_n))^{\top}$$

$$\boldsymbol{K}_{i,j} = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

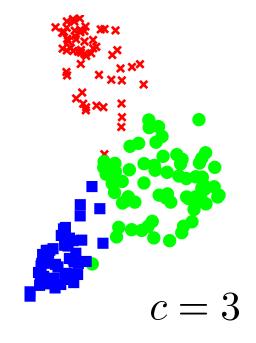
Examples

■ Wine data (UCI): 13-dim, 178 samples

$$K(x, x') = \exp(-\|x - x'\|^2/c^2)$$



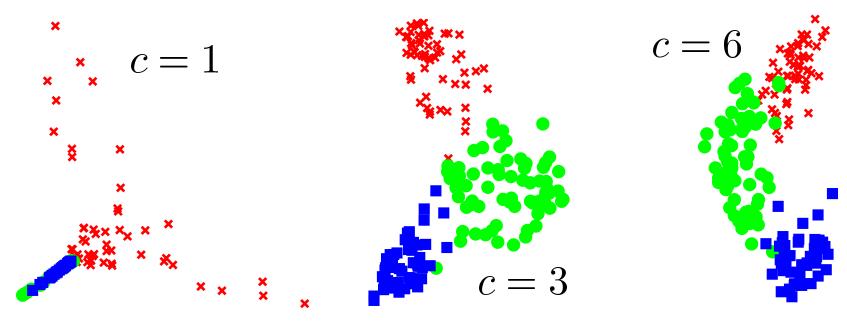
Linear PCA



Gaussian KPCA

Examples (cont.)

$$K(x, x') = \exp(-\|x - x'\|^2/c^2)$$



- Choice of kernels (type and parameter) depends on the result.
- Appropriately choosing kernels is not straightforward in practice.

Homework

 Implement kernel PCA with Gaussian kernels and reproduce the embedding result of the Wine data set.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Test kernel PCA with your own (artificial or real) data and analyze the characteristics of kernel PCA.

2. Prove that kernel PCA embedding of a sample f is given by

$$\overline{\boldsymbol{g}} = \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H} (\boldsymbol{k} - \frac{1}{n} \boldsymbol{K} \boldsymbol{1}_n)$$

Suggestion

- Read the following article for the next class:
 - M. Belkin & P. Niyogi: Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15(6), 1373-1396, 2003.

http://neco.mitpress.org/cgi/reprint/15/6/1373.pdf