Advanced Data Analysis (データ解析特論)

Masashi Sugiyama
(Department of Computer Science)
杉山 将(計算工学専攻)

Contact: W8E-505

sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Contents of This Lecture (1)

Syllabus (what I will provide in this course): The objective of this course is to introduce basic ideas and practical methods of discovering useful structure hidden in the data.

Statistical machine learning and data mining

Contents of This Lecture (2)

- What you are expected to learn in this course:
 - How to use data analysis methods
 - Ideas behind the methods
 - Novel research topics in data analysis
 - Something useful in your own research/life

Grading System

Regular homework (every week):

$$s_H, \quad 0 \le s_H \le 80$$

Final assignment & presentation:

$$s_P, \quad 0 \le s_P \le 80$$

Final score:

$$s_F = \min(100, s), \quad s = s_H + s_P$$

Note: s may be non-linearly rescaled depending on the distribution of scores

Brief Overview of the Course (1)⁵

- 3 topics in the research of "learning"
 - Understanding human brains
 - Developing learning machines
 - Mathematically clarifying mechanism of learning

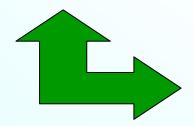
3 types of learning

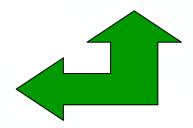
- Supervised learning
- Unsupervised learning
- Reinforcement learning

Brief Overview of the Course (3)

- Topics in unsupervised learning
 - Dimensionality reduction
 - Data clustering
 - Blind source separation
 - Outlier/novelty detection

Textbook


- Handouts are provided if necessary.
- Pointers to relevant articles will be provided.
- The following reference may be useful for learning elementally (and advanced) matrix calculations.
 - Matrix Cookbook: http://matrixcookbook.com/


3 Topics in Learning Research

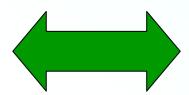
Understanding the brain (Physiology, psychology, neuroscience)

Developing learning machines
(Computer and electronic engineering)

Mathematically clarifying mechanism of learning (Computer and information science)

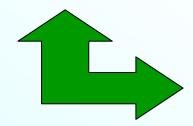
Understanding the Brain (1)

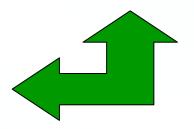
- Our brain consists of tens of billion neurons.
- Neurons are connected each other like a network.


Understanding the Brain (2)

- Each neuron has dendrites and axons, and the axon connects to other neurons via synapses.
- Neurons receive signals from other neurons through dendrites and send signals through axons.

Understanding the Brain (3)


- Structures and mechanisms of the brain have been clarified considerably.
- However, it is not still clear how learning is carried out with a number of neurons.


3 Topics in Learning Research

Understanding the brain (Physiology, psychology, neuroscience)

Developing learning machines
(Computer and electronic engineering)

Mathematically clarifying mechanism of learning (Computer and information science)

Developing Learning Machines (1)¹⁴

- Computers we are usually using are called the von Neumann-type.
- Computing principles are based on logical computation and symbol processing.
- Computational theories of Turing machines play central roles.

- Suitable for repeating simple straightforward calculation or processing the data following prescribed procedures.
- However, even state-of-the-art computers are inferior to babies in complex tasks such as recognizing humans' faces.

Developing Learning Machines (3)¹⁶

A computer that imitates information processing carried out in our brains is being developed (neurocomputer).

Developing Learning Machines (4) 17

We want neurocomputes to equip the following functions:

- They are adaptable to new environments, i.e., we do not have to prescribe responses for all possible situations.
- They can process vague, noisy, and contradictory information.

We want neurocomputes to equip the following functions:

- They consist of a number of artificial neurons and each neuron works independently.
- They are robust against noise, especially, faults of other neurons.
- They are small and efficient in electricity consumption.

Developing Learning Machines (6)¹⁹

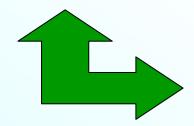
Several realizations of neurocomputers with electronic or optical circuits have been proposed.

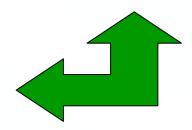
Pulse Density Medulating Digital Neural Network

Pulse Density Modulating Digital Neural Network System developed by University of Tsukuba

Developing Learning Machines (8)²⁰

However, current neurocomputers have the following problems:


- The number of neurons are not so large.
- Size is big.
- It is not clear how to train the computer!!


3 Topics in Learning Research

Understanding the brain (Physiology, psychology, neuroscience)

Developing learning machines
(Computer and electronic engineering)

Mathematically clarifying mechanism of learning (Computer and information science)

Clarifying Learning Mathematically (1)

In order to understand our brains and develop neurocomputers, we have to clarify how information is processed with a number of neurons.

Clarifying Learning Mathematically (2)

- Our brains have been formed through longtime evolution so they do not necessarily have the optimal structure.
- When developing learning machines, their architecture should be computerscientifically suitable, rather than just imitating humans' brain.

Clarifying Learning Mathematically (3)

Mathematical tools for clarifying essence of learning

- Mathematical statistics
- Algebraic geometry
- Functional analysis
- Information geometry
- Statistical physics
- etc.

A Little Break...

- There are 3 topics in learning research.
 - Understanding human brains
 - Developing learning machines
 - Mathematically clarifying mechanism of learning
- The third topic plays an important role for achieving the first two goals.
- We focus on the third topic:

"Theories of learning"

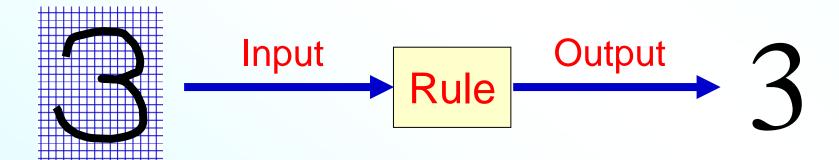
Three Types of Learning

- Supervised learning ("Pattern information processing", 2008 spring)
- Unsupervised learning

Reinforcement learning

What Is Supervised Learning?

- The goal of supervised learning is to estimate an unknown input-output rule.
- You are allowed to ask questions to a supervisor ("oracle") who knows the rule.
- The supervisor answers your questions using the rule.


What Is Supervised Learning?

- Pairs of questions and answers are called the training examples.
- If the underlying rule can be successfully estimated, we can answer to the questions that we have never taught.
- Such an ability is called the generalization capability.

Hand-written number recognition

We want to recognize the scanned hand-written characters.

- Training examples consist of { (hand-written number, its recognition result) }.
- If underlying input-output rule is successfully learned, unlearned hand-written numbers can be recognized.

Rainfall Estimation

Using the past rainfall and weather radar data, we want to estimate the rainfall tomorrow.

- Training examples are {(past rainfall and radar data, rainfall the next day)}
- If the rule is successfully learned, we can estimate the future rainfall by using the past rainfall and radar data.

Other Examples

- Other examples are...
 - Stock price estimation
 - Robot motor control
 - Computer vision
 - Spam filter
 - DNA classification

Three Types of Learning

- Supervised learning ("Pattern information processing", 2008 spring)
- Unsupervised learning (This course!)

Reinforcement learning

What Is Unsupervised Learning? 55

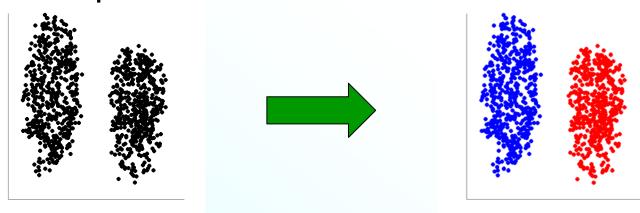
- You are given questions (input data) without answers (output data).
- The goal is to find an "interesting" structure in the data.

- The goal of unsupervised learning depends on the definition of "interestingness":
 - Dimensionality reduction
 - Clustering
 - Blind source separation
 - Outlier detection

Dimensionality Reduction

- Dimensionality reduction (Embedding)
 - We are given high-dimensional data.
 - High-dimensional data is too complex to analyze: Even estimating the density is extremely difficult ("curse of dimensionality")
 - We want to have a low-dimensional expression of the data without losing intrinsic information.
 - Data visualization: Reduced data is less than equal to 3-dimensional.

- "Swiss Roll"
- Data is 3-D but it essentially lies on a 2-D manifold.
- We want to "unfold" the roll.


- Embedding face images into 2D space.
- Images of the same face from different angles and lighting directions (64x64=4096D)

- Embedding hand-written numbers into 2D space.
- Images of different "2" (64x64=4096D)

Embedding lip images into 2D space.

Data Clustering

- Clustering
 - We want to divide the data into disjoint groups so that
 - Data in the same group have similar characteristics.
 - Data in different groups have different characteristics.
 - "Unsupervised classification"

"Connected" points seem to be in the same cluster, rather than "close" points.

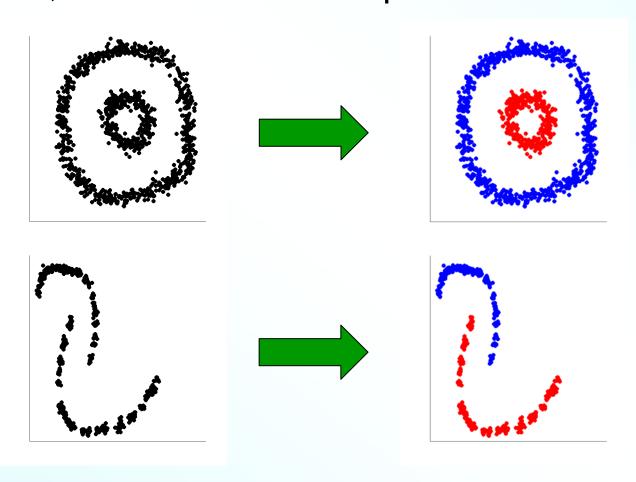
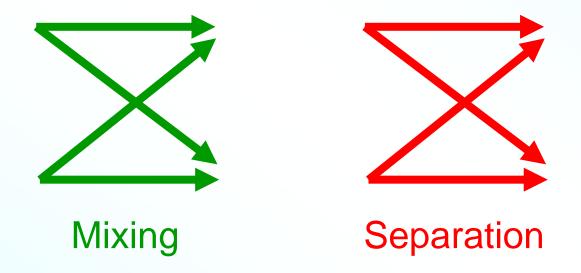


Image segmentation


Blind Source Separation

We can extract what a person is speaking in a noisy environment.

Syotoku-taishi can distinguish 10 conversations?

Blind Source Separation

Cocktail-party problem

We want to separate mixed signals into original ones.

	Mixed signal	Separated signal 1	Separated signal 2
Conversation			
+			
Conversation			
Conversation			
+			
Instrument			

Outlier Detection

- When a new data sample is added, we want to know whether it is different from the samples collected so far.
- Also referred to as novelty detection, oneclass classification

Three Types of Learning

- Supervised learning ("Pattern information processing", 2008 spring)
- Unsupervised learning (This course!)

Reinforcement learning

What Is Reinforcement Learning?

- The goal of reinforcement learning is same as supervised learning, i.e., to estimate an unknown underlying rule.
- However, different from supervised learning, we are not allowed to ask questions to the teacher.
- Instead, we can get rewards (reinforcement signals) for our estimated answer

What Is Reinforcement Learning?

- Practically, we assume that the rule that maximizes the rewards is the underlying rule.
- Under this assumption, the rule is learned so that the rewards is maximized.
- Reinforcement learning can be regarded as being placed between supervised learning and unsupervised learning.

- Learning stand-up motion
- The robot consists of 3 links connected by 2 joints.
- Robot can control it's joint angles by itself.
- The goal is to learn the control rule for stand up.
- Control rule: mapping from inner states to control signal.

- Essentially, reward is given when stand-up motion has been succeeded, otherwise reward is zero.
- However, this does not work well in practice.
- Continuous reward is preferred.
- For example, stand-up is equivalent to lifting the head, the reward is designed such that the higher the head is, the more the reward is.

Before learning

After 750 trials

After 920 trials

Conclusions

- There are 3 topics in learning research.
 - Understanding human brains
 - Developing learning machines
 - Mathematically clarifying mechanism of learning
- There are 3 types of learning.
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- Topics of unsupervised learning:
 - Dimensionality reduction
 - Data clustering
 - Blind source separation
 - Outlier/novelty detection

Homework

- 1. Prepare a high dimensional data set and explain the specification of the data.
 - Samples should be real-valued vectors!
 - Better if samples are from your own research area.
 - Better if dimensionality is not so small but not too large (say 10 to 100).
 - Better if the number of samples is large (say >>100).
 - If your data samples are not vectors (say sequences, images, graphs, texts, etc.), you may use some feature extraction software (developed in your research area) for converting them into vectors.
 - You do not have to finalize your data set now; it will be used in the final assignment. Use this opportunity to start searching good data sets.

Homework (cont.)

- 2. Prepare a computer environment where you can solve eigenvalue problems:
 - e.g., MATLAB, octave, scilab, R, etc.
- Deadline: next class (or e-mail me before the class)