
5.11 Seismic Response of Cable Stayed bridges 
1) Dynamic Characteristics of Cable Stayed bridges Based on Forced Excitation Tests  
Cable stayed bridges are complex structures consisting of various structural components with 
different stiffness and damping characteristics. They are more flexible than girder bridges, 
and precise structural analysis is required in seismic design. In the seismic design of cable 
stayed bridges, it is essential to accurately evaluate the natural periods, natural mode shapes 
and damping characteristics. To verify the validity of the seismic design, field forced 
excitation tests have been conducted for cable stayed bridges. Because most tests were 
conducted to clarify the aerodynamic stability, bridges were generally excited in the vertical 
direction. Dynamic properties of vertical flexural oscillations and torsional oscillations are 
key issues in the wind resistant design. In some cases, however, excitation was conducted for 
flexural oscillations in the transverse direction. Some typical results are presented in the 
following (Kawashima, Unjoh and Tsunomoto 1991).  
 
a ) Onomiti Bridge   
Onomiti Bridge is a part of the Honshu-Shikoku Bridge, which consists of a three span 
continuous steel girder deck and two towers as shown in Fig. 5.109. The center span is 215 m 
long and the total bridge length is 386 m. A series of forced excitation tests was conducted to 
excite vertical flexural oscillations and torsional oscillations using rotating eccentric mass 
shakers. Fig.5.110 shows mode shapes determined by the tests. Mode shapes computed by a 
linear flame analysis are presented in Fig. 5.111 for comparison. The computed mode shapes 
agree well with the measured ones. Table 5.3 shows comparison of the natural frequencies 
between the measured and the computed. Agreement of the natural frequency is satisfactory.  

 
Fig. 5.109 Onomichi Bridge 



 
Fig. 5.110 Correlation of Computed Mode Shapes to the Measured Based on Forced 

Excitation Test (Onomichi Bridge) 



 
Fig. 5.111 Suehiro Bridge 

 
Damping ratios ξ  were evaluated from the logarithmic damping ratio δ  of a free decay 

of the flexural oscillations as 
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where ma  and 1+ma  represent the amplitude at m-th and (m+1)th peak amplitudes, 
respectively, of a free oscillation. The damping ratios evaluated by Eq. (5.61) in the vertical 
flexural and torsional oscillations are also presented in Table 5.3. Damping ratios are less than 
0.01 for both the flexural and torsinal oscillations. 
 

Table 5.3 Natural Frequencies and Damping Ratios of Onomichi Bridge 
 

Natural Frequencies (Hz) Mode Shapes Mode
No. Measured Computed 

Damping Ratio 

1st 0.58 0.581 0.008 Symmetric 
2nd 1.38 1.385 - 
1st 0.92 0.914 0.0072 

Vertical 
Flexure 

Anti-Symmetric 
2nd 1.62 1.562 - 

Symmetric 1st 1.66 1.706 0.0056 Torsion 
Anti-Symmetric 2nd 2.94 3.055 0.0048 

 



b) Suehiro Bridge 
Suehiro Bridge is a three span continuous steel box girder bridge supported by two single 
towers as shown in Fig. 5.111. A force excitation test was conducted for vertical flexural and 
torsional oscillations. Fig. 5.112 shows a comparison of the mode shapes between the 
measured and the computed by a linear discrete flame analysis. The computed mode shapes 
are very close with the measured mode shapes. Table 5.4 shows a comparison of measured 
and computed natural frequencies as well as measured damping ratios.  

 
Fig. 5.112 Correlation of Computed Mode Shapes to the Measured (Suehiro Bridge) 

 
The damping ratios are evaluated by (1) decay of the free oscillations, (2) half-power 

method using resonance curves, and (3) half-power method using frequency response 
functions obtained based on micro tremor. In the half-power method, a damping ratio ξ  is 
evaluated as 
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where 0f : frequency corresponding to the peak response amplitude maxa  during a forced 
excitation, and 1f  and 2f : smaller and larger frequencies corresponding to the amplitude 



equal to 2/maxa . Since amplitudes of oscillations in micro tremor are very small, the 
damping ratios derived from micro tremor reflects energy dissipation of the bridge during 
oscillations with very small amplitudes.  

It is interesting to compare the damping ratios which are obtained by the different methods 
for the same mode shape. Although damping ratios evaluated by micro tremor tends to yield 
smaller values than those evaluated by the decay of free oscillations, this is not the case in this 
bridge. The damping ratios evaluated by the three methods are all smaller than 0.01. 

 
Table 5.4 Natural Frequencies and Damping Ratios of Suehiro Bridge 

 
Natural Frequencies 
(Hz) 

Damping Ratios  
 
Mode Shapes Measured Computed Decay of Free 

Oscillations 
Resonance 
Curves 

Micro 
Tremor 

1st 0.472 0.468 0.0049 - 0.0068 
2nd 1.069 1.116 0.0286 0.0021 0.0025 

Symmetric 

3rd 1.616 1.722 0.0019 0.0017 0.0030 
1st 0.712 0.746 0.0029 0.0022 0.0040 
2nd 1.264 1.334 0.0025 0.0031 0.0022 

Flexure 

Anti-Symmetric 

3rd 2.094 2.150 - 0.0077 - 
1st 1.446 1.537 0.0025 0.0039 0.0026 
2nd 4.444 4.487 - 0.0127 - 

Symmetric 

3rd 6.712 6.983 - 0.0061 - 

Torsion 

Anti-Symmetric 1st 2.888 3.020 0.0089 0.0043 0.0018 
 
 
c) Yamato-gawa Bridge  
Yamato-gawa Bridge is a part of the Osaka Bay Circulating Highway, and it is a three span 
continuous steel deck girder supported by two single towers as shown in Fig. 5.113. The 
center span is 355 m long. The bridge was excited for vertical flexural and torsional 
oscillations by pulling up and down a heavy masses at varying a location on the deck. Fig. 
5.114 shows that computed mode shapes agree well with the measured mode shapes. Table 
5.5 shows the measures and computed natural frequencies, and measured damping ratios. Of 
particular interest is the damping ratios. Similar to Suehiro Bridge, damping ratios were 
evaluated by (1) resonant curves using the half-power method and (2) micro tremor using the 
half-power method. It is noted that the damping ratios evaluated by the two methods are 
nearly the same for the same modes. The damping ratios depend on mode shapes, and they are 
generally less than 0.01.  
 

 

Fig. 5.113 Yamato-gawa Bridge 



 
Fig. 5.114 Correlation of Computed Mode Shapes to the Measured (Yamato-gawa Bridge) 
 

Table 5.5 Natural Frequencies and Damping Ratios of Yamato-gawa Bridge   
 

Natural Frequencies (Hz) Damping Ratios Mode Shapes 
Measured Computed Resonance Curve Micro Tremor 

1st 0.337 0.319 0.0035-0.0038 0081-0.0087 
2nd 0.416 0.372 0.0048-0.0049 0.0038-0.0051 
3rd 0.633 0.584 - 0.0064-0.010 

Flexure 

4th 0.861 0.838 0.0046-0.0049 0.0041-0.0057 
1st 0.844 0.727 0.0018-0.0025 0.0021-0.0028 
2nd - 1.440 - 0.0021-0.0030 
3rd - 1.771 - - 

Torsion 

4th - 2.233 - - 
 
 
d) Meiko-nishi Bridge  
Meiko-nishi Bridge is a three span continuous steel box girder bridge supported by two 
towers as shown in Fig. 5.115. The deck is supported by only cables so that the deck is free to 
move in the longitudinal direction. Prestressed cables are provided between the deck and the 
towers in order to control the natural period of the bridge and to prevent excessive relative 
displacement of the deck. A series of excitation tests was conducted at this bridge for flexural 
oscillations not only in the vertical direction but also in the transverse direction, and torsional 
oscillations by (1) a rotating eccentric-mass shaker, (2) impacts by heavy trucks running 
through the deck, and (3) pulling up and down a heavy mass. Fig. 5.116 compares the 
transverse flexural oscillations, which are important in seismic design, between the measured 
and the computed. The computed mode shapes agree well with the measured shapes.  

Fig. 5.117 shows the dependence of damping ratios for the vertical modes, which were 



measured by impacts by heavy trucks, on the magnitudes of oscillation displacements. The 
damping ratios increase as the magnitude of displacements increases.  
 

 
Fig. 5.115 Meiko-nishi Bridge 

 
Fig. 5.116 Correlation of Computed Mode Shapes to the Measured for Flexural Oscillation 

in the Transverse Direction (Meiko-nishi Bridge) 
 



 
Fig. 5.117 Dependence of Damping Ratios on the Magnitude of Displacement of Oscillation 
 
 
2) Natural Periods and Mode shapes of Cable Stayed bridges 
In addition to the bridge described above, the similar tests have been conducted for many 
cable stayed bridges as shown in Table 5.6, in which the natural frequencies evaluated by the 
tests are presented. Plotting the lowest natural frequency vs. the center span length relations 
for the vertical and the transverse flexural oscillations, and torsional oscillations in Fig. 5.118 
shows that there exist clear relations between the lowest natural frequencies and the center 
span lengths. A regression analysis provides the following relations (Kawashima, Unjoh and 
Tsunomoto 1991). 
 

763.0
1 8.33 −= Lf BV                                (5.63) 

262.1
1 482 −= Lf BH                                 (5.64) 

453.0
1 5.17 −= Lf T                                  (5.65) 

 
where BVf1 : lowest natural frequency for vertical flexural oscillation (Hz), BHf1 : lowest 
natural frequency for transverse flexural oscillation (Hz), Tf1 : lowest natural frequency for 
torsional oscillation (Hz), and L : center span length (m). Because Eq. (5.64) is derived from 
only 4 data, this has to be reevaluated in the future by increasing the number of data. The rate 
of change of the natural frequencies depending on the center span length is highest in BHf1 .  



Table 5.6 Natural Frequencies Obtained by Field Forced Excitation Tests 
 
Bridge  Onomichi Toyosato Arakawa Kamome Suehiro Rokko Suigo Gassho Yamato- 

gawa 
Meiko-N Matsugay

ma 
Omoto- 
gawa 

Bungo 

Span  85+215+8
5 

80+216+8
0 

60+160+6
0 

100+240+
100 

110+250+
110 

89+220+8
9 

178+111 144+46+1
44 

149+355+
149 

175+405+
149 

96 46+85+46 37+37 

Cable  Radial Fan Harp Multi Fan Fan Harp Fan Harp Fan Fan Harp Harp 
Deck  Steel 

Girder 
Steel Box Steel 

Girder 
Steel Box Steel Box Steel 

Truss 
Steel Box Steel Box Steel Box Steel Box PC Girder PC Box PC 

Hollow 
1st 0.58 0.52 0.75 0.47 0.47 0.94 0.45 0.64 0.34 0.33  1.99 1.60 
2nd 0.92 1.22 1.25  0.71 1.76 0.85 0.93 0.42 0.41  2.94 2.68 
3rd 1.38 1.92 1.91 0.99 1.07 2.42 1.26 1.31 0.63 0.73  5.3 3.30 
4th 1.62 2.48 2.41  1.26  2.03 1.41 0.86 0.81   5.30 
5th  3.33 2.83 1.46 1.62 2.68 2.56  1.03 0.95   5.69 
6th     2.09  3.38       
7th      3.37 4.59  1.70     

Vertical 
Flexure 

8th         1.86     
1st 1.66 1.43 1.45  1.45 2.05 1.64 1.70 0.87 1.31 3.08  2.93 
2nd 2.94 3.25 2.80  2.89 3.92 2.98  1.67    3.68 
3rd  4.08 4.24  4.44 4.97 4.45      6.86 

Torsion 

4th       5.63       
1st          0.26 1.51 1.52 5.50 
2nd          0.71  1.74  
3rd          0.76  2.15  

Transve
rse 
Flexure 

4th          1.01  2.35  



 

 
Fig. 5.118 Lowest Natural Frequencies vs. Center Span Length of Cable Stayed Bridges 

 
3) Damping Ratios of Cable Stayed Bridges  
Table 5.7 shows damping ratios of cable stayed bridges obtained from forced excitation tests. 
They were evaluated by either decays of free oscillations or resonance curves. Fig. 5.119 
shows how the damping ratios depend on the mode numbers for flexural oscillations. 
Scattering of the relations depending on the number of modes and the directions is 
considerable. However the mode shape dependence of the damping rations is not considerable. 



Table 5.7 Damping Rations Measured by Field Forced Excitation Tests 
 
Bridge  Onomichi Toyosato Arakawa Kamome Suehiro Rokko Suigo Gassho Yamato- 

gawa 
Meiko-N Matsugay

ma 
Omoto- 
gawa 

Bungo 

1st 0.0080  0.0038 0.0121 0.0049  0.0110 0.0118 0.0037 0.0029  0.0140 0.0161 
2nd 0.0072  0.0054  0.0029 0.033 0.0059 0.0131 0.0049 0.0029  0.0126 0.0076 
3rd  0.0081 0.0081 0.0132 0.0029 0.011 0.0064 0.0154  0.0024   0.0423 
4th  0.0138   0.0024 0.015 0.0102 0.0169 0.0048 0.0024   0.0068 
5th    0.0089 0.0019  0.0124      0.0102 
6th       0.0100       
7th      0.013 0.0132       

Vertical 
Flexure 

 0.0076 0.0110 0.0057 0.0115 0.0030 0.018 0.0099 0.0143 0.0045 0.0027  0.0134 0.0166 
1st 0.0056 0.0113   0.0025 0.0106 0.0092 0.0060 0.0019 0.0032   0.0121 
2nd 0.0048 0.0132   0.0089  0.0091      0.0628 
3rd      0.0134 0.0169      0.0126 
4th       0.0096       

Torsion 

 0.0053 0.0123   0.0057 0.0121 0.0111 0.0060 0.0019 0.0032   0.0138 
1st          0.0092 0.035 0.020 0.0317 
2nd          0.0025    
3rd          0.0016  0.111  
4th          0.0008    

Transvers
e Flexure 

          0.0035  0.0236 0.0317 
Averaged 0.0064 0.012 0.0057 0.011 0.0038 0.016 0.010 0.013 0.0038 0.0030 0.035 0.018 0.017 



 

 
Fig. 5.119 Variation of Damping Ratios depending on Mode Numbers 

 
 

To study the dependence of damping ratios on the center span lengths, the damping ratios 
which are averaged over all modes measured are plotted against the center span length L  in 
Fig. 5.120. The damping ratios decrease as the center span lengths increase as (Kawashima, 
Unjoh and Azuta 1988, Kawashima, Unjoh Tsunomoto 1991) 

 



 

 
Fig. 5.120 Damping Ratios vs. Center Span Lengths of Cable stayed Bridges 

 
645.0237.0 −= LBVξ                              (5.66) 
990.0751.1 −= LBHξ                              (5.67) 

638.0190.0 −= LTξ                               (5.68) 
 

where BVξ : damping ratio for vertical flexural oscillations, BHξ : damping ratio for 
transverse flexural oscillations, and Tξ : damping ratio for torsional oscillations. Because Eq. 
(5.67) was derived from only 4 data, its validity has to be reevaluated by increasing the 
number of data. The dependence of the damping ratios on the center span lengths is the 
highest in BHξ  with the dependence in BVξ and BHξ  being nearly the same.  

Because there exist clear relations between the natural frequencies and the center span 
lengths, and between the damping ratios and the center span lengths, there must exist relations 
between the damping ratios and the natural frequencies. Fig. 5.121 shows the relations 
between the damping ratios ( BVξ , BHξ , and Tξ ) and the natural frequencies ( BVf1 , 

BHf1 , and Tf1 ). Regression analysis provides the following relations, 



BVBV f10060.00053.0 +=ξ                        (5.69) 
BHBH f10037.00153.0 +=ξ                        (5.70) 

TT f10057.00016.0 +−=ξ                          (5.71) 

 

 
Fig. 5.121 Damping Ratio vs. Natural Frequencies of Cable stayed Bridges 

 
 

4) Analysis of Damping Ratios of a Cable Stayed Bridge based on Measured Records 
a) Dynamic Characteristics of Suigo Bridge 
Suigo Bridge is a 290 m long two-span continuous steel cable stayed as shown in Fig. 5.122. 
The deck consists of a steel box girder and it is rigidly connected to a 47.2 m tall single steel 
tower. The superstructure is supported by fixed bearings at the intermediate support (A3, refer 
to Fig. 5.122) and movable bearings at the both ends. Two caisson foundations and a pile 
foundation support the superstructure.  



 
Fig. 5.122 Suigo Bridge 

 
A series of forced excitation tests was conducted at this bridge to study the aero dynamic 

stability. Two electric exciters, which produce sinusoidal forces in the vertical direction by 
rotating a set of unbalanced masses, were set on the deck, and the bridge was excited for 
vertical flexure or torsional oscillations by synchronizing and anti-synchronizing the two 
exciters. Natural mode shapes and natural frequencies were estimated for lower significant 
modes from steady-state oscillation of the superstructure.  

Fig. 5.123 shows an example of resonant curves of response acceleration excited in the 
vertical direction. Mode shape are obtained by plotting the measured response accelerations at 
various locations along the members as shown in Fig. 5.124, in which computed mode shapes 
using a linear analytical model described later are presented. The computed mode shapes 
agree well with the measured mode shapes.  



 
Fig. 5.122 Suigo Bridge 

 

 
Fig. 5.123 Resonant Curve by Forced Excitation Test (Suigo Bridge) 

 



 
Fig. 5.124 Comparison of Natural Mode Shapes between Measured and Computed (Suigo 

Bridge) 
 
Damping ratios are estimated from logarithmic decays of the free oscillations from 

steady-state vibrations. Damping ratios, which are estimated from the logarithmic damping 
ratio, depend on the mode shapes as shown in Table 5.8.  

 
Table 5.8 Damping Ratios Estimated from Free Oscillation Tests (Suigo Bridge) 
 

Mode 1st 2nd 3rd 4th 5th 6th 7th Averaged 
Vertical Flexure 0.011 0.0059 0.0064 0.0102 0.0124 0.0100 0.0132 0.0099 
Torsion 0.0092 0.0091 0.0168 0.0096 - - - 0.0112 

 
b) Measured Records during Past Earthquakes 
Recording of bridge response has been conducted at this bridge since 1986. Two horizontal 
components force-balanced accelerometers are installed as shown in Fig. 5.43 at (1) top of the 
tower ( Al), (2) the mid-height of the tower (A2), (3) bottom of the tower (A3), (4) and (5) 
centers of both girders (A4 and A5), and (6) 15 m below the ground surface 230 m apart from 
the tower (A6).  
Large response accelerations were recorded by (1) M=6.5 event in 1986 (EQ-6), (2) M=6.7 
event in 1987 (EQ-16), and (3) M=6.7 event in 1987 (EQ-33). Peak response accelerations 
during these three events are shown in Table 5.9. Sufficiently large accelerations as shown in 
Fig. 5.125 were recorded by an M=6.7 event (EQ-33) which occurred at 62 km from the 
bridge in 1987. Of particular importance is the large response acceleration at the top of the 
tower (A1) in the transverse direction. Peak acceleration at A1 reached to 1,000 gal. Because 
the peak acceleration at the mid-height (A2) and the bottom (A3) of the tower is 471 gal and 



173 gal, respectively, it is obvious that the tower oscillated with a cantilevered mode shape. In 
the longitudinal direction, the peak acceleration is 446 gal at the top of the tower (A1), 297 
gal at the mid-height (A2 ) and 216gal at the bottom of the tower (A3), respectively. The 
response accelerations in the longitudinal direction are approximately 50 % smaller than the 
response accelerations in the transverse direction.  
 

Table 5.9 Peak Accelerations Recorded during Three Events 
 

A1 A2 A3 A4 A5 A6 Earthquake 
LG TR LG TR LG TR LG TR LG TR LG TR 

EQ-6 189 217 75 111 55 34 61 - 62 77 13 13 
EQ-16 238 322 109 218 87 54 91 - 100 104 23 22 
EQ-33 446 1,000 297 471 216 173 257 - 247 363 99 114 
1) LG and TR represent the longitudinal and the transverse directions, respectively 
2) Records in the transverse direction at A4 were not obtained due to malfunction 
 

 
Fig. 5.125 Acceleration Records during an M6.7 Event at Suigo ridge 

 
 
c) Dynamic Characteristics based on the Measured Accelerations  
Fig. 5.126 shows the Fourier spectra of the acceleration records presented in Fig. 5.125 
(EQ-33). Predominant frequencies in the response of the deck and the tower are 1.51 Hz in 
the longitudinal direction and 0.72 Hz, 0.87 Hz and 1.22 Hz in the transverse direction. 
Predominant frequency in the ground accelerations is 0.87 Hz in both the longitudinal and the 



transverse directions. One can note that 4.60 Hz in the longitudinal direction and 5.26 Hz in 
the transverse direction are also predominant in the response of the top of the tower (A1).  

 
Fig. 5.126 Fourier Spectra of Measured Response Acceleration at Suigo Bridge 

 
To evaluate the vibration mode of the bridge, the intensities of accelerations at the same 

instance after processed by a band-path filter are plotted as shown in Fig. 5.127. The first 
translational mode with a predominant frequency of 1.51 Hz and the first flexural mode of the 



tower with a predominant frequency of 4.60 Hz are observed in the longitudinal direction, 
while the first and the second flexural modes of the tower with predominant frequencies of 
0.72 Hz, 1.22 Hz, and 5. 26 Hz are observed in the transverse direction.  

 
Fig. 5.127 Vibration Modes Evaluated from Measured Response Accelerations 

 
To analyze the natural frequencies and the mode shapes, Suigo Bridge is idealized by a 

linear analytical model as shown in Fig. 5.1128. The cables are idealized as elastic beams 
with zero stiffness for flexure. Both ends of the deck, which are supported by the movable 
bearings, are assumed free to move in the longitudinal direction and fixed in the transverse 
direction. Friction resulted from movements of the deck relative to the substructures at the 
movable bearings is disregarded. Fig. 5.129 shows computed mode shapes and natural 
frequencies. The 1st, 2nd, 3rd, and 4th vertical flexural modes which were identified for the 
forced excitation test in Fig. 5.124 correspond to 1st, 6th, 9th, and 10th predicted modes, 
respectively, in Fig. 5.129. On the other hand, the 1st, 2nd, and 10th modes in the transverse 
direction in Fig. 5.129 correspond to the modes in Fig. 5.127 with predominant frequencies of 
0.72Hz, 1.22 Hz, and 5.26 Hz, respectively. However in the computed modes in Fig. 5.129, 
there is not the translational mode in the longitudinal direction (predominant frequency = 1.51 
Hz) which is identified from the measured accelerations (refer to Fig. 5.127). This is because 
only the superstructure is idealized in the analysis in Fig. 5.128. By including substructures 
into the analytical model, a rocking mode of the foundation with a natural frequency of 1.52 
Hz is obtained, and this corresponds to the translational mode with the predominant frequency 
of 1.51 Hz in Fig. 5.127.  



 
Fig. 5.128 Analytical Model of Suigo Bridge 

 
Fig. 5.129 Computed Mode Shapes and Natural Frequencies 

 
 
d) Dynamic Response Analysis of Suigo Bridge  
Measured seismic responses of Suigo Bridge are correlated with analysis by varying damping 
ratios assumed in the analysis (Kawashima, Unjoh and Azuta 1990). Because the response 
acceleration at the bottom of the tower (A3 point) was recorded, it is prescribed at A3 to 
compute responses in the longitudinal direction assuming that no input motions are applied at 
both ends supported by the movable bearings. On the other hand, the measured record at A3 is 
prescribed at A3 and both ends of the deck to compute responses in the transverse direction 
assuming that the same input motions apply at the three supports. It is noted that the analytical 
model in Fig. 5.128 does not include the substructures. As described above, including the 
substructures in the analytical model yields the rocking mode of substructures which results in 
the translational mode of the tower. However, because the response measured at A3 which 
includes this translational mode of the tower as a result of the rocking response of the 
substructures is applied as an input motion, disregard of this mode does not cause an error in 
the computation of the response of the superstructure.  



Damping ratios in the analysis are varied as 0.0, 0.01, 0.02, and 0.05. Analysis is 
conducted for the three records in Table 5.9. As an example, Fig. 5.130 shows a comparative 
plot of the response accelerations between the measured and the computed at the top of the 
tower (A1) and the center of the deck (A5) for EQ-33. A damping ratio of 0.05 yields a close 
correlation to the measured responses of the tower (A1) and the deck (A5) in the longitudinal 
direction. The damping ratio of 0.05 also yields a good correlation for the deck response (A5) 
in the transverse direction. However, for the response of the tower (A1) in the transverse 
direction, the 0.05 damping ratio yields a considerable underestimation, and a damping ratio 
of 0.0 yields a better agreement. Table 5.10 shows the damping ratios which yield the best 
correlation for the measured accelerations. They are 0.02 and 0-0.01 for the responses of the 
tower in the longitudinal and the transverse directions, respectively, and are 0.05 for the 
responses of the deck in both the longitudinal and the transverse directions.  

 
Table 5.10 Damping Ratios which yield the Best Correlation for Measured Responses 
 

Longitudinal Transverse Records 
A1 A2 A4 A5 A1 A2 A5 

EQ-6 0.02 0.05 0.05 0.05 0-0.01 0.01 0.05 
EQ-16 0.02 0.05 0.05 0.05 0-0.01 0.01 0.05 
EQ-33 0.05 0.05 0.05 0.05 0-0.01 0.01 0.05 

 

 
Fig. 5.130 Comparison of Response Accelerations between Measured and Computed (1) 
 



 
Fig. 5.130 Comparison of Response Accelerations between Measured and Computed (2) 
 

It is important that the damping ratios which provide the best correlation depend on the 
structural components and the directions. This results from the effect of cables on the 
response of the tower. Since the flexural rigidity of the cables is negligibly small, the tower is 
nearly free to oscillate as a free-standing column in the transverse direction. It is reasonable to 
have a very small damping ratio in such an oscillation as a free-standing column. On the other 
hand, the tower response is coupled with the deck response by the cables in the longitudinal 
direction, which results in a larger damping ratio of 0.05. 

Consequently, responses were computed using damping ratios estimated by Eq. (2.6), in 
which 0.02 and 0.0 are assumed for the tower in the longitudinal and transverse directions, 
respectively, and 0.05 is assumed for the deck in both the longitudinal and the transverse 
directions. Fig. 5.131 shows the correlation of response accelerations thus computed. The 
computed responses agree well with the measured responses at both the tower and the deck. 
This shows the importance of providing appropriate damping ratios depending on the 
structural components and the directions.   



 
Fig. 5.131 Computed Responses using Damping Ratios Estimated by Eq. (2.6) 

 
 
5) Damping Ratios Resulting from Energy Dissipation at Movable Bearings 
Damping of cable stayed bridges results from various sources of energy dissipation such as 
viscous damping, hysteretic damping of materials, structural damping, radiational damping at 
foundations, and energy dissipation at movable supports. Among those factors, energy 
dissipation at movable bearings contributes to change damping ratio depending on the 
magnitude of oscillation displacement in the longitudinal direction during forced excitation 
tests. Since upper and lower shoes are locked during longitudinal oscillations with very small 
amplitudes, sliding between the upper and the lower shoes does not occur at movable bearings. 
As the oscillation amplitude increases, sliding occurs resulting in energy dissipation due to 
friction forces between upper and lower bearings at movable bearings. Since this yields a 
unique damping characteristics, the effect of energy dissipation at movable bearings is 
described here. 

A friction force at movable supports is idealized by Coulomb friction force. Friction force 
is a self-equilibrium force which acts on a contact plane of bearing in proportion to the 
contact force. As shown in Fig. 5.132, direction of the friction force developed when the 
relative movement at the contact plane u∆  occurs is opposite to the direction of the relative 
velocity developed at the contact plane u&∆ , i. e., the friction force I

rF  and J
rF  at points 

I and J, respectively, are expressed as 
 

)( usignNFF J
r

I
r &∆⋅⋅=−= µ   when 0≠∆u&  

NFFN J
r

I
r µµ <−=<−   when 0=∆u&                (5.72) 

where 
IJ uuu −=∆                              (5.73) 

 
in which µ : coefficient of Coulomb friction, N : contact force, and Iu  and Ju : 
displacement at points I and J, respectively.  



 
Fig. 5.132 Coulomb Friction Force 

 
To evaluate the effect of friction forces at movable supports in the longitudinal oscillation, 

a cable stayed bridge is modeled by a discrete analytical model including the friction forces 
by Eq. (5.72). No damping forces other than the friction forces at movable supports are 
included in the analysis to isolate the effect of friction force. The equations of motion 
including the friction force is formulated in an incremental form, and can be solved for each 
time increment according to the standard dynamic analysis procedure (refer to Chapter 2). 
Iteration to approve equilibrium of the equations of motion is conducted when it is necessary.  

Two cable stayed bridges as shown in Fig. 5.133 are analyzed (Kawashima and Unjoh 
1989). One is a 380 m long two span continuous cable stayed bridge (A1-bridge) supported 
by a single tower. Fourteen cables are placed symmetrically in “fan” form. The girder is 
rigidly connected to the tower, with two ends being supported by movable bearings. The mass 
of the girder, the tower and the cables is 4435t, 734t and 120t, respectively. Reaction force at 
the two end supports due to the dead weight of the superstructure is 563 tf which is regarded 
as the contact force N defined by Eq. (5.72). The other is a 755 m long three span continuous 
cable stayed bridge (B-bridge) with a symmetrical distribution of mass and stiffness. The 
girder is not connected to the towers, but prestressed cables are set between the deck and the 
two towers for controlling the natural period of the bridge and for preventing excessive 
relative displacements to take place between the deck and the towers. The mass of the girder, 
the towers and the cables are 9630t, 1734t and 604t, respectively. The reaction forces at the 
two end supports due to the dead weight of the superstructure is 203tf. Soil-foundation 
interaction is disregarded in both bridges for simplicity.  

Fig. 5.134 shows predominant mode shapes of the two bridges. Fifth (natural period 
T =0.52 s) and 3rd modes (T=2.11 s) are predominant in the A-Bridge and the B-Bridge, 
respectively.  

Fig. 5.135 shows numerically computed decays of the free oscillations and damping ratios 
determined from the decays by Eq. (5.61) for 5th mode of the A-Bridge and 3rd mode of the 
B-Bridge. The free oscillations are generated by releasing the bridges with zero velocity from 
a laterally displaced positions with 300 mm lateral displacements at the deck. The coefficient 
of friction µ  equals 0.1 and 0.2. The oscillation amplitudes decrease nearly linearly with 
time in both bridges. The damping ratios determined by logarithmic damping ratios using Eq. 
(5.61) have some fluctuations, but they increase as the oscillation amplitudes decrease. Fig. 
5.136 shows how the damping ratios depend on the amplitudes of deck displacement. The 
damping ratio at an oscillation amplitude depends on bridges and mode shapes. When the 
coefficient of friction is 0.1, the damping ratio at 100 mm deck displacement is 0.005 in the 
A-Bridge and 0.025 in the B-Bridge. Since damping ratios of cable stayed bridges are very 
small, this level of damping ratios is important in the evaluation of seismic response of cable 
stayed bridges.  

 



 
Fig. 5.133 Models of Two Cable Stayed Bridges 

 
(a) 5th Mode of A-Bridge 

 

 
(b) 3rd mode of B-Bridge 

Fig. 5.134 Predominant Mode Shapes in the Longitudinal Direction 
 



  
 (a) 5th Mode of A-Bridge (b) 3rd Mode of B-Bridge    

Fig. 5.135 Decays of Free Oscillation and Damping Ratio Computed from the Decay 
 

Energy dissipation m
jE∆  resulted from a friction force during one cycle of the j-th mode 

between a time interval from mt  and jm Tt +  may be obtained as 
 

∫ ∆=∆ + jTm
m

t
t r

m
j udFE                         (5.74) 

 
where jT : natural period of j-th mode, rF : the friction force given by Eq. (5.72), and u∆ : 
relative displacement between a deck and a substructure at a movable bearing defined by Eq. 
(5.73). Since bearings are supported by rigid substructures in this analysis (refer to Fig. 5.133),  

m
jE∆  by Eq. (5.74) can be written as 
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where m

jru  represents the displacement at nodal point r for j-th mode at time mt .  
On the other hand, the kinematic energy of the bridge m

jE  for j-th mode can be written 
as 
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where jω : angular frequency of j-th mode, and jm : lumped mass at nodal point i.  
Introducing a coordinate m

jΓ  defined as 
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m

j
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jiu φΓ=                            (5.77) 
 



where jiφ : amplitude of j-th mode at nodal point i, and substituting Eq. (5.77) into Eqs. 
(5.75) and (5.76), one obtains 
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where, 
∑=
i

jiij mM 2φ                          (5.80) 

 
Substituting Eq. (5.78) and (5.79) into Eq. (4.?), one obtains the equivalent damping ratio 

jξ  for j-th mode as 
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Predicted damping ratio vs. amplitude of deck displacement relation determined by Eq. 

(5.81) is presented in Fig. 5.136. The damping ratios by Eq. (5.81) agree well with the 
damping ratios determined by Eq. (5.70) based on the numerical decays of free oscillations.  

 

  
 (a) 5th Mode of A-Bridge (b) 3rd Mode of B-Bridge   

Fig. 5.136 Damping Ratio vs. Deck Amplitude of Free Oscillation 
 
 

6) Dependence of Damping Ratios on Mode Shapes 
a) Experimental Tests 
Damping ratios of cable stayed bridges depend on mode shapes. Since the dependence of 
damping ratios on mode numbers has not yet been clarified based on measured damping ratios, 
a free oscillation test for cable stayed bridge models was conducted (Kawashima, Unjoh and 
Tsunomoto 1991, Kawashima, Unjoh and Tsunomoto 1993). Fig. 5.137 shows the 
experimental model which was fabricated for simulating the dynamic characteristics of 
Meiko-nishi Bridge (refer to Fig. 5.115) as prototype. The rigidity and mass of the model was 
determined assuming the scale of length, density and time equal to 1/150, 1/1 and 1/ 150 , 
respectively. Two supporting conditions of the deck are tested; (1) the deck is supported by 
only cables as the prototype bridge, and (2) the deck is rigidly fixed to the towers. In the first 



condition, the prestressed cables which are set in the prototype bridge between the deck and 
the towers are disregarded in the model bridge because of difficulty involved in modeling the 
prestressed cables. Eight cable arrangements and the number of cables are considered as 
shown in Fig. 5.138. The cable type changes from “fan” (Types 3A and 2A) to “harp” (Types 
3E and 2C), and the number of cables is either 3 (Type 3A-3E) or 2 (Type 2A-2C). Fig. 5.139 
shows the fundamental natural frequencies and natural mode shapes of the models which are 
predicted by a linear model. 

In the free oscillation test, the deck is statically displaced so that the bridge model deforms 
close to a target mode shape, and then the model is smoothly released to result in a free 
oscillation. As the target modes, the vertical flexural oscillations and the longitudinal 
oscillations presented in Fig. 5.139 are considered. Damping ratio is computed from decay of 
the free oscillation by Eq.(5.61).  

 

 
Fig. 5.137 Experimental Model 

 
Fig. 5.138 Cable Arrangement 



 
Fig. 5.139 Predicted Mode Shapes 

 
 

b) Effect of Cable Types on the Damping Ratios in the Longitudinal Oscillation  
Fig. 5.140 shows an example of decays of free oscillation when the Type 3A and 3E models 
are excited in the longitudinal direction. In addition to the cable arrangement, the supporting 
condition of the deck at the towers is different in this example. Decays of the deck 
displacement are significantly different between two models showing a dependence of the 
damping ratios on the cable types and the supporting conditions.  

Damping ratios determined by Eq. (5.61) are plotted against oscillation amplitudes in Fig. 
5.141. In the longitudinal direction, damping ratios considerably depend not only on the 
number of cables and the cable types but also on the amplitudes of oscillations. Damping 
ratios at an amplitude increase as the cable type changes from the fan (Type 3A) to the harp 
(Type 3E). Such a considerable cable type dependence of the damping ratios results from the 
flexural deformation of the deck in the vertical direction per unit deck displacement in the 
longitudinal direction (refer to Fig. 5.139). Larger vertical flexural deformations of the deck 
dissipatesmore energy resulting in the increase of damping ratios.  

The damping ratios also depends on the amplitude of oscillations, and this amplitude 
dependence of the damping ratios increases as the cable type changes from the fan (Type 3A) 
to the harp (Type 3E). 
 



 
(a) Type 3A, Deck is free from towers 

 
(b) Type 3E, Deck is rigidly connected to towers 

Fig. 5.140 Decays of free Oscillations in the Longitudinal Direction 

 
(1) Deck is free from the tower 

 
(2) Deck is connected to the towers 

Fig. 5.141 Damping Ratios vs. Oscillation Amplitudes in the Longitudinal Oscillations 



c) Effect of Cable Types on the Damping Ratios in the Vertical Oscillation  
Fig. 5.142 shows the damping ratios vs. amplitude of oscillations when the model is excited in 
the vertical flexural modes. Since the supporting condition between the deck and the towers is 
less sensitive in the vertical flexural oscillations, tests results only for the model bridge with 
the deckbeing  free from the towers are presented here. The damping ratios decrease as the 
cable type changes from the fan (Type 3A) to the harp (Type 3E). Comparing Fig. 5.142 to 
Fig. 5.141 (1), the damping ratios for the vertical flexural oscillations are smaller than the 
damping ratios for longitudinal oscillations. However it is important to note that the damping 
ratios are the largest in the Type 3A followed by the Type 3B, and Types 3D, 3C and 3E 
(difference between Types 3D, 3C and 3E is very small. On the other hand, the damping 
ratios are the largest in the Type 3E and they decrease in the order of Type 3D, 3C, 3B, and 
3A in the longitudinal oscillations.  

 
Fig. 5.142 Damping Ratios vs. Oscillation Amplitudes in the vertical Flexural Oscillations 

(Deck is free from the Towers) 
 
d) Evaluation of Damping Ratios of Cable Stayed Bridges 
The method used to evaluate the effect of energy dissipation at movable bearings (Eq. (5.81)) 
can be extended as follows to evaluate damping ratios of cable stayed bridges.  
 
1) Divide a cable stayed bridge into several structural segments (substructures) in which 
energy dissipation capability is practically the same.  
2) Idealize the i-th sub-structure by an n-degree of freedom discrete system, and then evaluate 
the strain energy of the i-th substructure for the j-th mode i

jE  as 
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i
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1                           (5.82) 

where ik
ju : amplitude at node k of i-th substructure for j-th mode, and ik : stiffness matrix 

of i-th substructure.  
 Strain energy of the whole structural system for the j-th mode can then be evaluated as  
 

∑=
i

i
jj EE                                 (5.83) 

 
3) Determine a relation of the energy dissipation i

jEδ  vs. the strain energy i
jE  by Eq. 

(5.82) in the i-th substructure for the j-th mode as 
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where i

jf  represents how the energy dissipation i
jEδ  develops associated with a 

deformation in the i-th substructure for j-th mode with the strain energy i
jE , and this is 

called as energy dissipation function. Because it is generally difficult to evaluate the energy 
dissipation function i

jf  based on numerical analyses, it has to be determined empirically 
based on appropriate experiments.  

In the sub-structures where the energy dissipation function i
jf  can be represented in 

terms of displacement at a specific point k in the i-th substructure for the j-th mode ik
ju , the 

energy dissipation function i
jf  may be represented as  
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4) Determine the energy dissipation in the entire structural system jEδ  for the j-th mode as 
 

∑=
i

i
jj EE δδ                              (5.86) 

  
5) Determine the damping ratio of the entire structural system for the j-th mode jξ  as 
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e) Evaluation of Energy Dissipation Functions for the Model Bridges 
Based on the above procedure, let us determine the energy dissipation functions of the model 
bridge. Sources of energy dissipation in the model bridge are material nonlinearity of the deck 
and the towers, and friction at anchors of the cables to the deck and the towers. The towers, 
the deck and the cable anchors are substructures.  

To estimate an energy dissipation function of the tower, the towers are fixed to a test floor 
as cantilevered beams. A mass each is installed at the top of the cantilevered decks. A simple 
free oscillation test is conducted for the towers which are being supported as a cantilevered 
beam. By smoothly releasing the top of the tower from a displaced position, a free oscillation 
simulating the first mode occurs. Fig. 5.143 shows how damping ratio of the towers depend 
on the oscillation amplitudes and the mass. As the oscillation amplitudes and the mass 
increase, the damping ratio of the towers increases. Fig. 5.144 shows the relation between 

1Eδ  and 1E . The relation is nearly independent of the mass, and it is approximated by a least 
square fit as  
 

2
111 0021.0016.0 EEE +=δ                          (5.88) 

 
Similarly, the energy dissipation functions for the deck and the cable anchor are obtained 

as 
 

37.1
11 083.0016.0 EE +=δ   (deck)                    (5.89) 



215.2
1 018.0 θωδ ⋅=E    (anchor)                    (5.90) 

 
where θ  and ϖ  represent angle between the tower and the cable, and angular frequency of 
the cable oscillation, respectively.  

 
Fig. 5.143 Damping Ratios vs. Oscillation Amplitudes of the Towers 

 
Fig. 5.144 Energy Dissipation vs. Strain Energy of the Towers 

 
 
f) Evaluation of Damping Ratio of Model Bridges Based on Energy Dissipation 
Functions  
Damping ratios of the model bridge by Eq.(5.87) using the energy dissipation functions of the 
towers, the deck and the anchors of cables by Eqs.(5.88), (5.89) and (5.90) are shown in Figs. 
5.145 and 5.146 for the longitudinal oscillations and the vertical flexural oscillations, 
respectively. The predicted damping ratios of the model bridge in the longitudinal oscillation 
increase as the oscillation amplitudes increase and the cable type changes from the fan (type 



3A) to the harp (type 3E). Such characteristics agree reasonably well with the experimental 
results, although the predicted damping ratios are underestimated as the cable type approaches 
to the harp.  

The predicted damping ratios of the model bridge for the vertical flexural oscillations are 
nearly independent of the cable type. The overall characteristics of the predicted damping 
ratios are reasonably close to the experimental results. The underestimation of the predicted 
damping rations may be due to energy dissipation at other than the decks, the towers, and the 
cable anchorages. 
 

 
Fig. 5.145 Predicted Damping Ratios vs. Oscillation Amplitudes for Longitudinal Oscillations 

 
Fig. 5.146 Predicted Damping Ratios vs. Oscillation Amplitudes for Vertical Flexural 
Oscillations 

 
 
 
7) Effect of Propagating Ground Motion for Cable Stayed Bridges  
The effect of multiple excitation has been studied for suspension bridges and cable-stayed 
bridges (Abdel-Ghaffar and Lawrence 1982, Abdel-Ghaffar and Rubin 1983). As an example 
of such analyses, a seismic response analysis of two cable stayed bridges subjected to multiple 
excitation, as shown in Fig.147, is presented here (Abdel-Ghaffar 1991). The shorter bridge 
(model I) consists of a 330 m long center span and two 144 m long side spans, while the 
longer bridge (model II) has double the span length of model I. They are idealized by 



continuous beam systems as shown in Fig.147. A nonlinear static analysis is conducted to 
compute the tangential stiffness of the bridge in its dead-load deformed state, and a linear 
dynamic response analysis is subsequently performed using this tangential stiffness.  

Figs. 148 and 149 show the effect of multiple excitation when the bridges were subjected 
to array ground accelerations observed during the October 1979 Imperial Valley, California 
earthquake. In those results, the responses due to dynamic displacements (refer to Eq. (2.11)) 
as well as the total responses are presented for comparison. It is seen that the multiple support 
excitation can have a significant effect.  

 

Fig. 5.147 Cable-stayed bridge analyzed 



 

Fig. 5.148 Effect of multiple excitation on the axial force at cable 7  

 

Fig. 5.149 Effect of multiple excitation on the forces at deck 
 
 
 

 



5.12 Seismic Performance of Long-span Bridges during the 1995 Kobe Earthquake 
 
The Akashi Kaikyo Bridge (AK Bridge) is the world longest suspension bridge. It suffered 
damage in the 1995 Kobe earthquake. When the Kobe earthquake occurred, it was under 
construction: the abutments and towers were completed, and a part of superstructure was hung 
by main cables. The fault crossed the bridge between two tower foundations (P2 and P3). This 
resulted in the permanent movements and rotations in all the abutments and tower foundations. 
Most predominantly, the P3 tower foundation and A4 abutment were dislocated 1.3 m and 1.4 
m, respectively, relative to the 1A abutment and 2P tower foundation. as shown in Fig. 150. 
This resulted in the increase of center span length from originally designed 1990m to 1990.8 
m and the total length from 3910m to 3911.09 m. Permanent lateral drift of 0.15m and 0.1m 
occurred at the top of tower 1 and tower 2, respectively, due to permanent rotation as well as 
the lateral offset. A settlement of about 20 mm was found in the P2 tower foundation. 
However, an examination after the earthquake showed that such a permanent drift brought 
minor effect to the stability and safety of the AK bridge because the strain was minor due to 
the long span (Saeki et al, 1997; Yasuda et al, 2000). Fault traces were known based on a 
geotechnical survey at the preliminary design stage, and it was reflected in the determination 
of the locations of foundations because soil near a fault is generally weak.  

Since the AK Bridge was party instrumented from the construction stage, several 
important records were obtained in the Kobe earthquake. Most important record was measured 
at the top and mid-height of P2 tower by velocity sensors. Fig. 151 shows the locations of 
sensors and velocity response at the top of P2. The peak velocity was about 1.3 m/s and 0.9 
m/s in transverse and longitudinal directions, respectively The predominant frequencies of the 
velocity response were 0.47Hz and 0.40Hz in longitudinal and transverse directions, 
respectively. Long response with a duration over 180 seconds was induced, which may be 
attributed to low damping of the tower. Peak acceleration computed from the velocity was 
over l g in transverse direction. 

Based on the measured response, two analyses were conducted; first was to a simulation of 
the response of the tower in the H-k-n earthquake, and the second was an evaluation of the 
seismic safety of the completed bridge subjected to the near-field ground motion. In the 
response evaluation of the tower in the H-k-n earthquake, the tower, the foundation and soils 
were idealized by a two dimensional finite elementa and beams. Effect of cables was idealized 
by lumping the tributary mass of cables at the top of tower. The ground acceleration measured 
at the Kobe Observatory of Japan Metheorological Agency during the 1995 Kobe Earthquake 
was used as an input ground motion. The JMA Kobe Observatory is about 15km from the AK 
Bridge. The acceleration at 330 m deep bedrock with shear wave velocity of 880 m/s was 
computed from the JMA Kobe record, and it was applied at the surface of Kobe Layer with 
shear wave velocity of 880 m/s  to compute the ground motion at the granite bedrock with 
shear wave velocity of 2,000 m/s. (Morikawa et al, 1 998; Ninomiya et al, 2000; Yasuda et al, 
2000). The granite bedrock motion was then applied at the 268m deep bedrock to compute the 
soil, P2 foundation and P2 tower response.  

Fig. 152 shows the comparison of measured and computed response velocity at the top of 
P2 tower. Accuracy of the numerical simulation is poor, It may be attributed to at least 
following reasons.  
 
z The input ground motion measured at JMA Kobe Observatory was not close enough to 

the AK Bridge. Hence, numerical calculation of ground motion at the construction site 
from the JMA Kobe record includes tremendous error. 

z Multiple excitation and spatial variation of ground motion were disregarded.  
z Effect of constraint of tower by cables was idealized by only lumping the tributary mass 



of cables at the top of tower.  
z Rupture process of the fault was not considered.  
 

The same ground motion was used to compute the response of the total bridge system so as 
to evaluate the safety of the completed bridge. Main interest was to know whether the AK 
Bridge was safe or not if it had been completed when the earthquake occurred. Figure 5 shows 
steel stress at corner induced at the bottom ofP2 and P3 towers. The peak stress was 434 MPa 
and 430 MPa at P2 and P3 towers, respectively. Since it was less than the yield stress of 
451MPa, it was decided that the AK Bridge was safe even if the completed bridge was 
exposed to the H-k-n earthquake (Saeki et al, 1997). The AK Bridge was completed and put in 
service in April 1998.  
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