5.11 Seismic Response of Cable Stayed bridges

1) Dynamic Characteristics of Cable Stayed bridges Based on Forced Excitation Tests
Cable stayed bridges are complex structures consisting of various structural components with
different stiffness and damping characteristics. They are more flexible than girder bridges,
and precise structural analysis is required in seismic design. In the seismic design of cable
stayed bridges, it is essential to accurately evaluate the natural periods, natural mode shapes
and damping characteristics. To verify the validity of the seismic design, field forced
excitation tests have been conducted for cable stayed bridges. Because most tests were
conducted to clarify the aerodynamic stability, bridges were generally excited in the vertical
direction. Dynamic properties of vertical flexural oscillations and torsional oscillations are
key issues in the wind resistant design. In some cases, however, excitation was conducted for
flexural oscillations in the transverse direction. Some typical results are presented in the
following (Kawashima, Unjoh and Tsunomoto 1991).

a) Onomiti Bridge

Onomiti Bridge is a part of the Honshu-Shikoku Bridge, which consists of a three span
continuous steel girder deck and two towers as shown in Fig. 5.109. The center spanis 215 m
long and the total bridge length is 386 m. A series of forced excitation tests was conducted to
excite vertical flexural oscillations and torsional oscillations using rotating eccentric mass
shakers. Fig.5.110 shows mode shapes determined by the tests. Mode shapes computed by a
linear flame analysis are presented in Fig. 5.111 for comparison. The computed mode shapes
agree well with the measured ones. shows comparison of the natural frequencies
between the measured and the computed. Agreement of the natural frequency is satisfactory.
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Fig. 5.109 Onomichi Bridge
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Fig. 5.111 Suehiro Bridge

Damping ratios & were evaluated from the logarithmic damping ratio & of afree decay
of the flexural oscillations as

s _ log m (5.61)

J1-£2 ® am,1

where a,, and a1 represent the amplitude a m-th and (m+1)th peak amplitudes,
respectively, of a free oscillation. The damping ratios evaluated by Eq. (5.61) in the vertical
flexural and torsional oscillations are also presented in Table 5.3. Damping ratios are less than
0.01 for both the flexural and torsina oscillations.

8:

Table 5.3 Natural Frequencies and Damping Ratios of Onomichi Bridge

Mode Shapes Mode | Natural Frequencies (Hz) | Damping Ratio
No. | Measured | Computed
Vertica | Symmetric 1st 0.58 0.581 0.008
Flexure 2nd 1.38 1.385 -
Anti-Symmetric | 1st 0.92 0.914 0.0072
2nd 1.62 1.562 -
Torsion | Symmetric 1st 1.66 1.706 0.0056
Anti-Symmetric | 2nd 2.94 3.055 0.0048




b) Suehiro Bridge

Suehiro Bridge is a three span continuous steel box girder bridge supported by two single
towers as shown in Fig. 5.111. A force excitation test was conducted for vertical flexural and
torsiona oscillations. Fig. 5.112 shows a comparison of the mode shapes between the
measured and the computed by a linear discrete flame analysis. The computed mode shapes

are very close with the measured mode shapes. shows a comparison of measured
and computed natural frequencies as well as measured damping ratios.
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Fig. 5.112 Correlation of Computed Mode Shapes to the Measured (Suehiro Bridge)

The damping ratios are evaluated by (1) decay of the free oscillations, (2) half-power
method using resonance curves, and (3) half-power method using frequency response
functions obtained based on micro tremor. In the half-power method, a damping ratio & is

evaluated as

g-t2— N (5.62)
2fg

where fq: frequency corresponding to the peak response amplitude an, during a forced
excitation, and f; and f,: smaler and larger frequencies corresponding to the amplitude



equal to ayay / V2. Since amplitudes of oscillations in micro tremor are very small, the
damping ratios derived from micro tremor reflects energy dissipation of the bridge during
oscillations with very small amplitudes.

It isinteresting to compare the damping ratios which are obtained by the different methods
for the same mode shape. Although damping ratios evaluated by micro tremor tends to yield
smaller values than those evaluated by the decay of free oscillations, thisis not the casein this
bridge. The damping ratios evaluated by the three methods are all smaller than 0.01.

Natural Frequencies and Damping Ratios of Suehiro Bridge

Natural Frequencies Damping Ratios
(H2)
M ode Shapes Measured | Computed | Decay of Free | Resonance | Micro
Oscillations Curves Tremor
Flexure | Symmetric 1st | 0.472 0.468 0.0049 - 0.0068
2nd | 1.069 1.116 0.0286 0.0021 0.0025
3rd | 1.616 1.722 0.0019 0.0017 0.0030
Anti-Symmetric | 1st | 0.712 0.746 0.0029 0.0022 0.0040
2nd | 1.264 1.334 0.0025 0.0031 0.0022
3rd | 2.094 2.150 - 0.0077 -
Torsion | Symmetric 1st | 1.446 1.537 0.0025 0.0039 0.0026
2nd | 4.444 4.487 - 0.0127 -
3rd | 6.712 6.983 - 0.0061 -
Anti-Symmetric | 1st | 2.888 3.020 0.0089 0.0043 0.0018

c) Yamato-gawa Bridge
Y amato-gawa Bridge is a part of the Osaka Bay Circulating Highway, and it is a three span
continuous steel deck girder supported by two single towers as shown in Fig. 5.113. The
center span is 355 m long. The bridge was excited for vertical flexural and torsional
oscillations by pulling up and down a heavy masses at varying a location on the deck. Fig.
5.114 shows that computed mode shapes agree well with the measured mode shapes.
shows the measures and computed natural frequencies, and measured damping ratios. Of
particular interest is the damping ratios. Similar to Suehiro Bridge, damping ratios were
evaluated by (1) resonant curves using the half-power method and (2) micro tremor using the
half-power method. It is noted that the damping ratios evaluated by the two methods are
nearly the same for the same modes. The damping ratios depend on mode shapes, and they are
generally lessthan 0.01.
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Fig. 5.113 Yamato-gawa Bridge
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Natural Frequencies and Damping Ratios of Y amato-gawa Bridge

Mode Shapes Natural Frequencies (Hz) | Damping Ratios
Measured | Computed Resonance Curve | Micro Tremor
Flexure 1st 0.337 0.319 0.0035-0.0038 0081-0.0087
2nd 0.416 0.372 0.0048-0.0049 0.0038-0.0051
3rd 0.633 0.584 - 0.0064-0.010
4th 0.861 0.838 0.0046-0.0049 0.0041-0.0057
Torsion 1st 0.844 0.727 0.0018-0.0025 0.0021-0.0028
2nd - 1.440 - 0.0021-0.0030
3rd - 1.771 - -
4th - 2.233 - -

d) Meko-nishi Bridge
Meiko-nishi Bridge is a three span continuous steel box girder bridge supported by two
towers as shown in Fig. 5.115. The deck is supported by only cables so that the deck is free to
move in the longitudinal direction. Prestressed cables are provided between the deck and the
towers in order to control the natural period of the bridge and to prevent excessive relative
displacement of the deck. A series of excitation tests was conducted at this bridge for flexural
oscillations not only in the vertical direction but also in the transverse direction, and torsional
oscillations by (1) a rotating eccentric-mass shaker, (2) impacts by heavy trucks running
through the deck, and (3) pulling up and down a heavy mass. Fig. 5.116 compares the
transverse flexural oscillations, which are important in seismic design, between the measured
and the computed. The computed mode shapes agree well with the measured shapes.

Fig. 5.117 shows the dependence of damping ratios for the vertica modes, which were



measured by impacts by heavy trucks, on the magnitudes of oscillation displacements. The
damping ratios increase as the magnitude of displacements increases.

Fig. -7 Moeiko-nishi Bridge

Fig. 5.115 Meiko-nishi Bridge
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Fig. 5.117 Dependence of Damping Ratios on the Magnitude of Displacement of Oscillation

2) Natural Periods and M ode shapes of Cable Stayed bridges

In addition to the bridge described above, the similar tests have been conducted for many
cable stayed bridges as shown in , in which the natural frequencies evaluated by the
tests are presented. Plotting the lowest natural frequency vs. the center span length relations
for the vertical and the transverse flexural oscillations, and torsional oscillations in Fig. 5.118
shows that there exist clear relations between the lowest natural frequencies and the center
span lengths. A regression analysis provides the following relations (Kawashima, Unjoh and
Tsunomoto 1991).

£,BY = 33870763 (5.63)
£,BH = 48271262 (5.64)
f,l =17.5704%3 (5.65)

where leV: lowest natural frequency for vertical flexural oscillation (Hz), leH: lowest
natural frequency for transverse flexural oscillation (Hz), flT: lowest natural frequency for
torsional oscillation (Hz), and L : center span length (m). Because Eq. (5.64) is derived from
only 4 data, this has to be reevaluated in the future by increasing the number of data. The rate
of change of the natural frequencies depending on the center span length is highest in leH :



Table 5.6 Natural Frequencies Obtained by Field Forced Excitation Tests

Bridge Onomichi | Toyosato | Arakawa | Kamome | Suehiro Rokko Suigo Gassho Y amato- Meiko-N Matsugay | Omoto- Bungo
gawa ma gawa
Span 85+215+8 | 80+216+8 | 60+160+6 | 100+240+ | 110+250+ | 89+220+8 | 178+111 144+46+1 | 149+355+ | 175+405+ | 96 46+85+46 | 37+37
5 0 0 100 110 9 44 149 149
Cable Radial Fan Harp Multi Fan Fan Harp Fan Harp Fan Fan Harp Harp
Deck Steel Steel Box | Steel Steel Box | Steel Box | Steel Steel Box | Steel Box | Steel Box | Steel Box | PC Girder | PC Box PC
Girder Girder Truss Hollow
Vertical | 1st 0.58 0.52 0.75 0.47 0.47 0.94 0.45 0.64 0.34 0.33 1.99 1.60
Flexure | 2nd 0.92 122 1.25 0.71 1.76 0.85 0.93 0.42 041 2.94 2.68
3rd 1.38 1.92 191 0.99 1.07 242 1.26 131 0.63 0.73 5.3 3.30
4th 1.62 2.48 241 1.26 2.03 141 0.86 0.81 5.30
5th 3.33 2.83 1.46 1.62 2.68 2.56 1.03 0.95 5.69
6th 2.09 3.38
7th 3.37 4.59 1.70
8th 1.86
Torsion | 1st 1.66 1.43 1.45 1.45 2.05 1.64 1.70 0.87 131 3.08 293
2nd 294 3.25 2.80 2.89 3.92 2.98 1.67 3.68
3rd 4.08 4.24 4.44 4.97 4.45 6.86
4th 5.63
Transve | 1st 0.26 151 152 5.50
rse 2nd 0.71 1.74
Flexure T3 0.76 2.15
4th 1.01 2.35
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Fig. 5.118 Lowest Natural Frequencies vs. Center Span Length of Cable Stayed Bridges

3) Damping Ratios of Cable Stayed Bridges

Table 5.7 shows damping ratios of cable stayed bridges obtained from forced excitation tests.
They were evaluated by either decays of free oscillations or resonance curves. Fig. 5.119
shows how the damping ratios depend on the mode numbers for flexural oscillations.
Scattering of the relations depending on the number of modes and the directions is
considerable. However the mode shape dependence of the damping rations is not considerable.



Table 5.7 Damping Rations Measured by Field Forced Excitation Tests

Bridge Onomichi | Toyosato | Arakawa | Kamome | Suehiro Rokko Suigo Gassho Y amato- Meiko-N Matsugay | Omoto- Bungo
gawa ma gawa
Vertica 1st | 0.0080 0.0038 0.0121 0.0049 0.0110 0.0118 0.0037 0.0029 0.0140 0.0161
Flexure 2nd | 0.0072 0.0054 0.0029 0.033 0.0059 0.0131 0.0049 0.0029 0.0126 0.0076
3rd 0.0081 0.0081 0.0132 0.0029 0.011 0.0064 0.0154 0.0024 0.0423
4th 0.0138 0.0024 0.015 0.0102 0.0169 0.0048 0.0024 0.0068
5th 0.0089 0.0019 0.0124 0.0102
6th 0.0100
7th 0.013 0.0132
0.0076 0.0110 0.0057 0.0115 0.0030 0.018 0.0099 0.0143 0.0045 0.0027 0.0134 0.0166
Torsion 1st | 0.0056 0.0113 0.0025 0.0106 0.0092 0.0060 0.0019 0.0032 0.0121
2nd | 0.0048 0.0132 0.0089 0.0091 0.0628
3rd 0.0134 0.0169 0.0126
4th 0.0096
0.0053 0.0123 0.0057 0.0121 0.0111 0.0060 0.0019 0.0032 0.0138
Transvers | 1st 0.0092 0.035 0.020 0.0317
eFlexure | 2nd 0.0025
3rd 0.0016 0.111
4th 0.0008
0.0035 0.0236 0.0317
Averaged 0.0064 0.012 0.0057 0.011 0.0038 0.016 0.010 0.013 0.0038 0.0030 0.035 0.018 0.017
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Fig. 5.119 Variation of Damping Ratios depending on Mode Numbers

To study the dependence of damping ratios on the center span lengths, the damping ratios
which are averaged over all modes measured are plotted against the center span length L in
Fig. 5.120. The damping ratios decrease as the center span lengths increase as (Kawashima,
Unjoh and Azuta 1988, Kawashima, Unjoh Tsunomoto 1991)
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¢ BY = 0.237L706% (5.66)
aBH _ 1 757 0.990 (5.67)
¢T =0.100L70638 (5.68)
where &BV damping ratio for vertlcal flexural oscillations, é’; . damping ratio for

transverse flexural oscillations, and 5.. : damping ratio for torsional oscnlations. Because Eq.
(5.67) was derived from only 4 data, its validity has to be reevaluated by increasing the
number of data. The dependence of the dampl ng ratlos on the center span lengths is the
highest in QBH with the dependencein & Vand 5.. being nearly the same.

Because there exist clear relations between the natural frequencies and the center span
lengths, and between the damping ratios and the center span lengths, there must exist relations
between the damping ratios and the natural frequencee Fig. 5.121 shows the relatlons
between the damping ratios (& &BH , and & ) and the natural frequencies (fl
fl ,and f;' ). Regression analyss provides the following relations,



¢ BV = 0.0053+0.0060f,5Y (5.69)
1

BH BH
& = 0.0153+ 0.0037 f; (5.70)
T T
T = _0.0016+0.0057f; (5.71)
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Fig. 5.121 Damping Ratio vs. Natural Frequencies of Cable stayed Bridges

4) Analysis of Damping Ratios of a Cable Stayed Bridge based on M easured Records

a) Dynamic Characteristics of Suigo Bridge

Suigo Bridge is a 290 m long two-span continuous steel cable stayed as shown in Fig. 5.122.
The deck consists of a steel box girder and it isrigidly connected to a 47.2 m tall single steel
tower. The superstructure is supported by fixed bearings at the intermediate support (A3, refer

to Fig. 5.122) and movable bearings at the both ends. Two caisson foundations and a pile
foundation support the superstructure.
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Fig. 5.122 Suigo Bridge

A series of forced excitation tests was conducted at this bridge to study the aero dynamic
stability. Two electric exciters, which produce sinusoidal forces in the vertical direction by
rotating a set of unbalanced masses, were set on the deck, and the bridge was excited for
vertical flexure or torsional oscillations by synchronizing and anti-synchronizing the two
exciters. Natural mode shapes and natural frequencies were estimated for lower significant
modes from steady-state oscillation of the superstructure.

Fig. 5.123 shows an example of resonant curves of response acceleration excited in the
vertical direction. Mode shape are obtained by plotting the measured response accel erations at
various locations along the members as shown in Fig. 5.124, in which computed mode shapes
using a linear analytical model described later are presented. The computed mode shapes
agree well with the measured mode shapes.
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Damping ratios are estimated from logarithmic decays of the free oscillations from
steady-state vibrations. Damping ratios, which are estimated from the logarithmic damping
ratio, depend on the mode shapes as shown in

Table 5.8 Damping Ratios Estimated from Free Oscillation Tests (Suigo Bridge)

Mode 1st 2nd 3rd 4th 5th 6th 7th Averaged
Vertical Flexure | 0.011 | 0.0059 | 0.0064 | 0.0102 | 0.0124 | 0.0100 | 0.0132 | 0.0099
Torsion 0.0092 | 0.0091 | 0.0168 | 0.0096 | - - - 0.0112

b) M easured Records during Past Earthquakes

Recording of bridge response has been conducted at this bridge since 1986. Two horizontal
components force-balanced accelerometers are installed as shown in Fig. 5.43 at (1) top of the
tower ((Al), (2) the mid-height of the tower (A2), (3) bottom of the tower (A3), (4) and (5)
centers of both girders (A4 and A5), and (6) 15 m below the ground surface 230 m apart from
the tower (A6).

Large response accelerations were recorded by (1) M=6.5 event in 1986 (EQ-6), (2) M=6.7
event in 1987 (EQ-16), and (3) M=6.7 event in 1987 (EQ-33). Peak response accelerations
during these three events are shown in . Sufficiently large accelerations as shown in
Fig. 5.125 were recorded by an M=6.7 event (EQ-33) which occurred at 62 km from the
bridge in 1987. Of particular importance is the large response acceleration at the top of the
tower (A1) in the transverse direction. Peak acceleration at A1 reached to 1,000 gal. Because
the peak acceleration at the mid-height (A2) and the bottom (A3) of the tower is 471 gal and



173 gal, respectively, it is obvious that the tower oscillated with a cantilevered mode shape. In
the longitudinal direction, the peak acceleration is 446 gal at the top of the tower (A1), 297
ga at the mid-height (A2 ) and 216ga at the bottom of the tower (A3), respectively. The
response accelerations in the longitudinal direction are approximately 50 % smaller than the
response accel erations in the transverse direction.

Table 5.9 Peak Accelerations Recorded during Three Events

Earthquake | Al A2 A3 A4 A5 A6

LG TR LG |TR |LG TR | LG TR |[LG | TR LG | TR
EQ-6 189 | 217 75 111 |55 34 |61 - 62 77 13 13
EQ-16 238 | 322 109 | 218 | 87 54 |91 - 100 | 104 | 23 22
EQ-33 446 | 1,000 | 297 | 471 | 216 173 | 257 | - 247 1363 |99 114

1) LG and TR represent the longitudinal and the transverse directions, respectively
2) Recordsin the transverse direction at A4 were not obtained due to malfunction
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Fig. 5.125 Acceleration Records during an M6.7 Event at Suigo ridge

c) Dynamic Characteristics based on the M easured Accelerations

Fig. 5.126 shows the Fourier spectra of the acceleration records presented in Fig. 5.125
(EQ-33). Predominant frequencies in the response of the deck and the tower are 1.51 Hz in
the longitudina direction and 0.72 Hz, 0.87 Hz and 1.22 Hz in the transverse direction.
Predominant frequency in the ground accelerations is 0.87 Hz in both the longitudinal and the



transverse directions. One can note that 4.60 Hz in the longitudinal direction and 5.26 Hz in
the transverse direction are also predominant in the response of the top of the tower (A1).
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Fig. 5.126 Fourier Spectra of Measured Response Acceleration at Suigo Bridge

To evaluate the vibration mode of the bridge, the intensities of accelerations at the same
instance after processed by a band-path filter are plotted as shown in Fig. 5.127. The first
trandlational mode with a predominant frequency of 1.51 Hz and the first flexural mode of the



tower with a predominant frequency of 4.60 Hz are observed in the longitudinal direction,
while the first and the second flexural modes of the tower with predominant frequencies of
0.72 Hz, 1.22 Hz, and 5. 26 Hz are observed in the transverse direction.
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Fig. 5.127 Vibration Modes Evaluated from Measured Response Accelerations

To analyze the natural frequencies and the mode shapes, Suigo Bridge is idealized by a
linear analytical model as shown in Fig. 5.1128. The cables are idealized as elastic beams
with zero stiffness for flexure. Both ends of the deck, which are supported by the movable
bearings, are assumed free to move in the longitudinal direction and fixed in the transverse
direction. Friction resulted from movements of the deck relative to the substructures at the
movable bearings is disregarded. Fig. 5.129 shows computed mode shapes and natural
frequencies. The 1st, 2nd, 3rd, and 4th vertical flexura modes which were identified for the
forced excitation test in Fig. 5.124 correspond to 1st, 6th, 9th, and 10th predicted modes,
respectively, in Fig. 5.129. On the other hand, the 1st, 2nd, and 10th modes in the transverse
direction in Fig. 5.129 correspond to the modesin Fig. 5.127 with predominant frequencies of
0.72Hz, 1.22 Hz, and 5.26 Hz, respectively. However in the computed modes in Fig. 5.129,
there is not the translational mode in the longitudinal direction (predominant frequency = 1.51
Hz) which is identified from the measured accelerations (refer to Fig. 5.127). This is because
only the superstructure is idealized in the analysis in Fig. 5.128. By including substructures
into the analytical model, a rocking mode of the foundation with a natural frequency of 1.52
Hz is obtained, and this corresponds to the translational mode with the predominant frequency
of 1.51 HzinFig. 5.127.
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Fig. 5.129 Computed Mode Shapes and Natural Frequencies

d) Dynamic Response Analysis of Suigo Bridge

Measured seismic responses of Suigo Bridge are correlated with analysis by varying damping
ratios assumed in the analysis (Kawashima, Unjoh and Azuta 1990). Because the response
acceleration at the bottom of the tower (A3 point) was recorded, it is prescribed at A3 to
compute responses in the longitudinal direction assuming that no input motions are applied at
both ends supported by the movable bearings. On the other hand, the measured record at A3 is
prescribed at A3 and both ends of the deck to compute responses in the transverse direction
assuming that the same input motions apply at the three supports. It is noted that the analytical
model in Fig. 5.128 does not include the substructures. As described above, including the
substructures in the analytical model yields the rocking mode of substructures which resultsin
the tranglational mode of the tower. However, because the response measured at A3 which
includes this trandational mode of the tower as a result of the rocking response of the
substructures is applied as an input motion, disregard of this mode does not cause an error in
the computation of the response of the superstructure.



Damping ratios in the analysis are varied as 0.0, 0.01, 0.02, and 0.05. Analysis is
conducted for the three recordsin . As an example, Fig. 5.130 shows a comparative
plot of the response accelerations between the measured and the computed at the top of the
tower (A1) and the center of the deck (A5) for EQ-33. A damping ratio of 0.05 yields a close
correlation to the measured responses of the tower (A1) and the deck (A5) in the longitudinal
direction. The damping ratio of 0.05 also yields a good correlation for the deck response (A5)
in the transverse direction. However, for the response of the tower (Al) in the transverse
direction, the 0.05 damping ratio yields a considerable underestimation, and a damping ratio
of 0.0 yields a better agreement. shows the damping ratios which yield the best
correlation for the measured accelerations. They are 0.02 and 0-0.01 for the responses of the
tower in the longitudinal and the transverse directions, respectively, and are 0.05 for the
responses of the deck in both the longitudinal and the transverse directions.

Table 5.10 Damping Ratios which yield the Best Correlation for Measured Responses

Records | Longitudinal Transverse
Al A2 A4 A5 Al A2 A5
EQ-6 0.02 0.05 0.05 0.05 0-0.01 0.01 0.05
EQ-16 0.02 0.05 0.05 0.05 0-0.01 0.01 0.05
EQ-33 0.05 0.05 0.05 0.05 0-0.01 0.01 0.05
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It is important that the damping ratios which provide the best correlation depend on the
structural components and the directions. This results from the effect of cables on the
response of the tower. Since the flexural rigidity of the cablesis negligibly small, the tower is
nearly free to oscillate as a free-standing column in the transverse direction. It is reasonable to
have a very small damping ratio in such an oscillation as a free-standing column. On the other
hand, the tower response is coupled with the deck response by the cables in the longitudinal
direction, which resultsin alarger damping ratio of 0.05.

Consequently, responses were computed using damping ratios estimated by Eqg. (2.6), in
which 0.02 and 0.0 are assumed for the tower in the longitudinal and transverse directions,
respectively, and 0.05 is assumed for the deck in both the longitudinal and the transverse
directions. Fig. 5.131 shows the correlation of response accelerations thus computed. The
computed responses agree well with the measured responses at both the tower and the deck.
This shows the importance of providing appropriate damping ratios depending on the
structural components and the directions.
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5) Damping Ratios Resulting from Energy Dissipation at M ovable Bearings

Damping of cable stayed bridges results from various sources of energy dissipation such as
viscous damping, hysteretic damping of materials, structural damping, radiational damping at
foundations, and energy dissipation at movable supports. Among those factors, energy
dissipation at movable bearings contributes to change damping ratio depending on the
magnitude of oscillation displacement in the longitudinal direction during forced excitation
tests. Since upper and lower shoes are locked during longitudinal oscillations with very small
amplitudes, dliding between the upper and the lower shoes does not occur at movable bearings.
As the oscillation amplitude increases, sliding occurs resulting in energy dissipation due to
friction forces between upper and lower bearings at movable bearings. Since this yields a
unique damping characteristics, the effect of energy dissipation at movable bearings is
described here.

A friction force at movable supports is idealized by Coulomb friction force. Friction force
is a self-equilibrium force which acts on a contact plane of bearing in proportion to the
contact force. As shown in Fig. 5.132, direction of the friction force developed when the
relative movement at the contact plane Au occurs is opposite to the dlrectl on of the relative
velocity developed at the contact plane Au, i. e, the friction force F and FIr at points
| and J, respectively, are expressed as

FrI :—FrJ =u-N-sign(Au) when Au=0
~uN<F'=-F7J <uN when Au=0 (5.72)

where
Au=Uj —U, (5.73)

in which g : coefficient of Coulomb friction, N : contact force, and u; and uj:
displacement at points| and J, respectively.
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To evauate the effect of friction forces at movable supports in the longitudinal oscillation,
a cable stayed bridge is modeled by a discrete analytical model including the friction forces
by Eqg. (5.72). No damping forces other than the friction forces at movable supports are
included in the analysis to isolate the effect of friction force. The equations of motion
including the friction force is formulated in an incremental form, and can be solved for each
time increment according to the standard dynamic analysis procedure (refer to Chapter 2).
Iteration to approve equilibrium of the equations of motion is conducted when it is necessary.

Two cable stayed bridges as shown in Fig. 5.133 are analyzed (Kawashima and Unjoh
1989). One is a 380 m long two span continuous cable stayed bridge (A1-bridge) supported
by a single tower. Fourteen cables are placed symmetrically in “fan” form. The girder is
rigidly connected to the tower, with two ends being supported by movable bearings. The mass
of the girder, the tower and the cables is 4435t, 734t and 120t, respectively. Reaction force at
the two end supports due to the dead weight of the superstructure is 563 tf which is regarded
as the contact force N defined by Eq. (5.72). The other is a 755 m long three span continuous
cable stayed bridge (B-bridge) with a symmetrical distribution of mass and stiffness. The
girder is not connected to the towers, but prestressed cables are set between the deck and the
two towers for controlling the natural period of the bridge and for preventing excessive
relative displacements to take place between the deck and the towers. The mass of the girder,
the towers and the cables are 9630t, 1734t and 604t, respectively. The reaction forces at the
two end supports due to the dead weight of the superstructure is 203tf. Soil-foundation
interaction is disregarded in both bridges for simplicity.

Fig. 5.134 shows predominant mode shapes of the two bridges. Fifth (natural period
T=0.52 s) and 3rd modes (T=2.11 s) are predominant in the A-Bridge and the B-Bridge,
respectively.

Fig. 5.135 shows numerically computed decays of the free oscillations and damping ratios
determined from the decays by Eqg. (5.61) for 5th mode of the A-Bridge and 3rd mode of the
B-Bridge. The free oscillations are generated by releasing the bridges with zero velocity from
alaterally displaced positions with 300 mm lateral displacements at the deck. The coefficient
of friction x equals 0.1 and 0.2. The oscillation amplitudes decrease nearly linearly with
time in both bridges. The damping ratios determined by logarithmic damping ratios using Eq.
(5.61) have some fluctuations, but they increase as the oscillation amplitudes decrease. Fig.
5.136 shows how the damping ratios depend on the amplitudes of deck displacement. The
damping ratio at an oscillation amplitude depends on bridges and mode shapes. When the
coefficient of friction is 0.1, the damping ratio at 100 mm deck displacement is 0.005 in the
A-Bridge and 0.025 in the B-Bridge. Since damping ratios of cable stayed bridges are very
small, this level of damping ratios is important in the evaluation of seismic response of cable
stayed bridges.
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Energy dissipation AE; ™ resulted from afriction force during one cycle of the j-th mode
between atime interval from t, and tp, +T; may be obtained as

AE;™ = [{miTj |F, |dAu (5.74)
m

where T;: natural period of j-th mode, F; : the friction force given by Eq. (5.72), and Au:
relative displacement between a deck and a substructure at a movable bearing defined by Eq.
(5.73). Since bearings are supported by rigid substructuresin this analysis (refer to Fig. 5.133),
AE;™ by Eq. (5.74) can be written as

AE;™ =4y Fu; ™ (5.75)
r

where Uuj; ™ represents the displacement at nodal point r for j-th mode at time t,y,.
On the other hand, the kinematic energy of the bridge E; M for j-th mode can be written

as

1
Ejmzzwjz_Zm(ujim)z (5.76)
|

where «j: angular frequency of j-th mode, and m; : lumped mass at nodal point i.
Introducing a coordinate ' M defined as

Ujimzrjm¢ji (5.77)



where ¢;i: amplitude of j-th mode at nodal point i, and substituting Eq. (5.77) into Egs.
(5.75) and (5.76), one obtains

AE;" =41 Fr gy (5.78)
r
1
B} =J 0 (N™)M; (5.79)
where,
M = Zmg;° (5.80)
|

Substituting Eq. (5.78) and (5.79) into Eq. (4.7), one obtains the equivalent damping ratio
¢j forj-thmodeas

g L OB 2 SF¢ (5.80)
A g™ gefrymy |

Predicted damping ratio vs. amplitude of deck displacement relation determined by Eq.
(5.81) is presented in Fig. 5.136. The damping ratios by Eq. (5.81) agree well with the
damping ratios determined by Eq. (5.70) based on the numerical decays of free oscillations.
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Fig. 5.136 Damping Ratio vs. Deck Amplitude of Free Oscillation

6) Dependence of Damping Ratios on M ode Shapes

a) Experimental Tests

Damping ratios of cable stayed bridges depend on mode shapes. Since the dependence of
damping ratios on mode numbers has not yet been clarified based on measured damping ratios,
afree oscillation test for cable stayed bridge models was conducted (Kawashima, Unjoh and
Tsunomoto 1991, Kawashima, Unjoh and Tsunomoto 1993). Fig. 5.137 shows the
experimental model which was fabricated for simulating the dynamic characteristics of
Meiko-nishi Bridge (refer to Fig. 5.115) as prototype. The rigidity and mass of the model was
determined assuming the scale of length, density and time equal to 1/150, /1 and 1/4/150,
respectively. Two supporting conditions of the deck are tested; (1) the deck is supported by
only cables as the prototype bridge, and (2) the deck isrigidly fixed to the towers. In the first



condition, the prestressed cables which are set in the prototype bridge between the deck and
the towers are disregarded in the model bridge because of difficulty involved in modeling the
prestressed cables. Eight cable arrangements and the number of cables are considered as
shown in Fig. 5.138. The cable type changes from “fan” (Types 3A and 2A) to “harp” (Types
3E and 2C), and the number of cablesis either 3 (Type 3A-3E) or 2 (Type 2A-2C). Fig. 5.139
shows the fundamental natural frequencies and natural mode shapes of the models which are
predicted by alinear model.

In the free oscillation test, the deck is statically displaced so that the bridge model deforms
close to a target mode shape, and then the model is smoothly released to result in a free
oscillation. As the target modes, the vertical flexural oscillations and the longitudinal
oscillations presented in Fig. 5.139 are considered. Damping ratio is computed from decay of
the free oscillation by Eq.(5.61).
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b) Effect of Cable Typeson the Damping Ratiosin the Longitudinal Oscillation

Fig. 5.140 shows an example of decays of free oscillation when the Type 3A and 3E models
are excited in the longitudinal direction. In addition to the cable arrangement, the supporting
condition of the deck at the towers is different in this example. Decays of the deck
displacement are significantly different between two models showing a dependence of the
damping ratios on the cable types and the supporting conditions.

Damping ratios determined by Eqg. (5.61) are plotted against oscillation amplitudes in Fig.
5.141. In the longitudinal direction, damping ratios considerably depend not only on the
number of cables and the cable types but aso on the amplitudes of oscillations. Damping
ratios at an amplitude increase as the cable type changes from the fan (Type 3A) to the harp
(Type 3E). Such a considerable cable type dependence of the damping ratios results from the
flexural deformation of the deck in the vertical direction per unit deck displacement in the
longitudinal direction (refer to Fig. 5.139). Larger vertical flexural deformations of the deck
dissipatesmore energy resulting in the increase of damping ratios.

The damping ratios also depends on the amplitude of oscillations, and this amplitude
dependence of the damping ratios increases as the cable type changes from the fan (Type 3A)
to the harp (Type 3E).
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c) Effect of Cable Typeson the Damping Ratiosin the Vertical Oscillation

Fig. 5.142 shows the damping ratios vs. amplitude of oscillations when the model is excited in
the vertical flexural modes. Since the supporting condition between the deck and the towersis
less sensitive in the vertical flexural oscillations, tests results only for the model bridge with
the deckbeing free from the towers are presented here. The damping ratios decrease as the
cable type changes from the fan (Type 3A) to the harp (Type 3E). Comparing Fig. 5.142 to
Fig. 5.141 (1), the damping ratios for the vertical flexural oscillations are smaller than the
damping ratios for longitudinal oscillations. However it is important to note that the damping
ratios are the largest in the Type 3A followed by the Type 3B, and Types 3D, 3C and 3E
(difference between Types 3D, 3C and 3E is very small. On the other hand, the damping
ratios are the largest in the Type 3E and they decrease in the order of Type 3D, 3C, 3B, and
3A inthelongitudinal oscillations.
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d) Evaluation of Damping Ratios of Cable Stayed Bridges
The method used to evaluate the effect of energy dissipation at movable bearings (Eg. (5.81))
can be extended as follows to evaluate damping ratios of cable stayed bridges.

1) Divide a cable stayed bridge into several structural segments (substructures) in which
energy dissipation capability is practically the same.

2) ldealize the i-th sub-structure by an n-degree of freedom discrete system, and then evaluate
the strain energy of thei-th substructure for the j-th mode E j' as

E; =§%(uj'k)2k'uj'k (5.82)

where u ;' amplitude at node k of i-th substructure for j-th mode, and k': stiffness matrix

of i-th substructure.
Strain energy of the whole structural system for the j-th mode can then be evaluated as

Ej=XEj' (5.83)
|

3) Determine a relation of the energy dissipation JoE ji vs. the strain energy E ji by Eq.
(5.82) in the i-th substructure for the j-th mode as



E;' =1 (Ej" (5.84)

where f;' represents how the energy dissipation OE;' develops associated with a
deformation in the i-th substructure for j-th mode with the strain energy E j' , and this is
called as energy dissipation function. Because it is generally difficult to evaluate the energy
dissipation function f j' based on numerical analyses, it has to be determined empirically
based on appropriate experiments. _

In the sub-structures where the energy dissipation function f;' can be represented in
terms of displacement at a specific point k in the i-th substructure for the j-th mode u; 1k , the
energy dissipation function fj' may be represented as

GE;' = f;'(u;™) (5.85)
4) Determine the energy dissipation in the entire structural system JE; for thej-th mode as

| =T Ej' (5.86)
|

5) Determine the damping ratio of the entire structural system for thej-th mode &; as

OFj

gj = E (5.87)

€) Evaluation of Energy Dissipation Functionsfor the Model Bridges

Based on the above procedure, let us determine the energy dissipation functions of the model
bridge. Sources of energy dissipation in the model bridge are material nonlinearity of the deck
and the towers, and friction at anchors of the cables to the deck and the towers. The towers,
the deck and the cable anchors are substructures.

To estimate an energy dissipation function of the tower, the towers are fixed to atest floor
as cantilevered beams. A mass each isinstalled at the top of the cantilevered decks. A simple
free oscillation test is conducted for the towers which are being supported as a cantilevered
beam. By smoothly releasing the top of the tower from a displaced position, a free oscillation
simulating the first mode occurs. Fig. 5.143 shows how damping ratio of the towers depend
on the oscillation amplitudes and the mass. As the oscillation amplitudes and the mass
increase, the damping ratio of the towers increases. Fig. 5.144 shows the relation between
O0E; and E;. Therelation is nearly independent of the mass, and it is approximated by aleast
squarefit as

SE; = 0.016E; + 0.0021F,;2 (5.88)

Similarly, the energy dissipation functions for the deck and the cable anchor are obtained
as

5E; = 0.016+ 0.083E,"%7  (deck) (5.89)



5E; = 0.0180%1° . 92

(anchor)

(5.90)

where ¢ and @ represent angle between the tower and the cable, and angular frequency of
the cable oscillation, respectively.

06—

CXPERIMEMTE
| &0

B DBkl | WEKGHT i
| € 225kt | PLACED OM )

04t

02}

DAMPING RATIO k%)

|

b a2%igl | TOWER TOF L]
.

| E 5!.I-.a|

LY
AMALYEIS BY B 6 -‘:-l

Fig. 5.143 Damping Ratios vs. Oscillation Amplitudes of the Towers

{kgf -mm)

ENERGY DISSIPATION 3E,

Fig. 5.144 Energy Dissipation vs. Strain Energy of the Towers

2 3

DISFLACEMENT AMPLITUDE (mmj

(4. 15

08

o
o

o
'Y

©
)

LEGEND

WEIGHT OF MASS
PLACED ON TOWER TOP
0

A O
B ® 0.85kgf ‘ﬁd
¢ & 2.55kgf Y ]
] D © 4.25kgf o
E @ 5.10kgf /
o 5
//
///
e
0’ SE =0016-Eg* 0.002-Eg
o’ L I L
0 i 2 3 4

STRAIN ENERGY Esy (kgf mm)

f) Evaluation of Damping Ratio of Model Bridges Based on Energy Dissipation

Functions

Damping ratios of the model bridge by Eq.(5.87) using the energy dissipation functions of the
towers, the deck and the anchors of cables by Egs.(5.88), (5.89) and (5.90) are shown in Figs.
5.145 and 5.146 for the longitudinal oscillations and the vertical flexural oscillations,
respectively. The predicted damping ratios of the model bridge in the longitudinal oscillation
increase as the oscillation amplitudes increase and the cable type changes from the fan (type



3A) to the harp (type 3E). Such characteristics agree reasonably well with the experimental
results, although the predicted damping ratios are underestimated as the cable type approaches
to the harp.

The predicted damping ratios of the model bridge for the vertical flexural oscillations are
nearly independent of the cable type. The overall characteristics of the predicted damping
ratios are reasonably close to the experimental results. The underestimation of the predicted
damping rations may be due to energy dissipation at other than the decks, the towers, and the
cable anchorages.
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7) Effect of Propagating Ground Motion for Cable Stayed Bridges

The effect of multiple excitation has been studied for suspension bridges and cable-stayed
bridges (Abdel-Ghaffar and Lawrence 1982, Abdel-Ghaffar and Rubin 1983). As an example
of such analyses, a seismic response analysis of two cable stayed bridges subjected to multiple
excitation, as shown in Fig.147, is presented here (Abdel-Ghaffar 1991). The shorter bridge
(model 1) consists of a 330 m long center span and two 144 m long side spans, while the
longer bridge (model 11) has double the span length of model |I. They are idedlized by



continuous beam systems as shown in Fig.147. A nonlinear static analysis is conducted to
compute the tangential stiffness of the bridge in its dead-load deformed state, and a linear
dynamic response analysis is subsequently performed using this tangential stiffness.

Figs. 148 and 149 show the effect of multiple excitation when the bridges were subjected
to array ground accelerations observed during the October 1979 Imperial Valley, California
earthquake. In those results, the responses due to dynamic displacements (refer to Eq. (2.11))
as well as the total responses are presented for comparison. It is seen that the multiple support
excitation can have a significant effect.
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5.12 Seismic Performance of L ong-span Bridges during the 1995 Kobe Earthquake

The Akashi Kaikyo Bridge (AK Bridge) is the world longest suspension bridge. It suffered
damage in the 1995 Kobe earthquake. When the Kobe earthquake occurred, it was under
construction: the abutments and towers were completed, and a part of superstructure was hung
by main cables. The fault crossed the bridge between two tower foundations (P2 and P3). This
resulted in the permanent movements and rotations in all the abutments and tower foundations.
Most predominantly, the P3 tower foundation and A4 abutment were dislocated 1.3 m and 1.4
m, respectively, relative to the 1A abutment and 2P tower foundation. as shown in Fig. 150.
This resulted in the increase of center span length from originally designed 1990m to 1990.8
m and the total length from 3910m to 3911.09 m. Permanent lateral drift of 0.15m and 0.1m
occurred at the top of tower 1 and tower 2, respectively, due to permanent rotation as well as
the lateral offset. A settlement of about 20 mm was found in the P2 tower foundation.
However, an examination after the earthquake showed that such a permanent drift brought
minor effect to the stability and safety of the AK bridge because the strain was minor due to
the long span (Saeki et al, 1997; Yasuda et al, 2000). Fault traces were known based on a
geotechnical survey at the preliminary design stage, and it was reflected in the determination
of the locations of foundations because soil near afault is generally weak.

Since the AK Bridge was party instrumented from the construction stage, severa
important records were obtained in the Kobe earthquake. Most important record was measured
at the top and mid-height of P2 tower by velocity sensors. Fig. 151 shows the locations of
sensors and velocity response at the top of P2. The peak velocity was about 1.3 m/s and 0.9
m/s in transverse and longitudinal directions, respectively The predominant frequencies of the
velocity response were 0.47Hz and 0.40Hz in longitudinal and transverse directions,
respectively. Long response with a duration over 180 seconds was induced, which may be
attributed to low damping of the tower. Peak acceleration computed from the velocity was
over | g in transverse direction.

Based on the measured response, two analyses were conducted; first was to a simulation of
the response of the tower in the H-k-n earthquake, and the second was an evaluation of the
seismic safety of the completed bridge subjected to the near-field ground motion. In the
response evaluation of the tower in the H-k-n earthquake, the tower, the foundation and soils
were idealized by atwo dimensional finite el ementa and beams. Effect of cables was idealized
by lumping the tributary mass of cables at the top of tower. The ground accel eration measured
at the Kobe Observatory of Japan Metheorological Agency during the 1995 Kobe Earthquake
was used as an input ground motion. The IMA Kobe Observatory is about 15km from the AK
Bridge. The acceleration at 330 m deep bedrock with shear wave velocity of 880 m/s was
computed from the IMA Kobe record, and it was applied at the surface of Kobe Layer with
shear wave velocity of 880 m/s to compute the ground motion at the granite bedrock with
shear wave velocity of 2,000 m/s. (Morikawa et al, 1 998; Ninomiya et al, 2000; Yasuda et a,
2000). The granite bedrock motion was then applied at the 268m deep bedrock to compute the
soil, P2 foundation and P2 tower response.

Fig. 152 shows the comparison of measured and computed response velocity at the top of
P2 tower. Accuracy of the numerical simulation is poor, It may be attributed to at least
following reasons.

® The input ground motion measured at IMA Kobe Observatory was not close enough to
the AK Bridge. Hence, numerical calculation of ground motion at the construction site
from the IMA Kobe record includes tremendous error.

® Multiple excitation and spatial variation of ground motion were disregarded.

® [Effect of constraint of tower by cables was idealized by only lumping the tributary mass



of cables at the top of tower.
® Rupture process of the fault was not considered.

The same ground motion was used to compute the response of the total bridge system so as
to evaluate the safety of the completed bridge. Main interest was to know whether the AK
Bridge was safe or not if it had been completed when the earthquake occurred. Figure 5 shows
steel stress at corner induced at the bottom of P2 and P3 towers. The peak stress was 434 MPa
and 430 MPa at P2 and P3 towers, respectively. Since it was less than the yield stress of
451MPg, it was decided that the AK Bridge was safe even if the completed bridge was
exposed to the H-k-n earthquake (Saeki et al, 1997). The AK Bridge was completed and put in
servicein April 1998.
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