
5.5 Seismic Response of Curved Bridges  
1) Structural Response of Curved Bridges 
Curved bridges are susceptible to damage from strong motion excitation. For example, the 
5/14 South Connector Overcrossing of the Golden State freeway and the Antelope Valley 
freeway interchange collapsed in the San Fernando earthquake in 1971 (Tseng and Penzien 
1973). Because the response in the longitudinal and the transverse directions are coupled in 
curved bridges, the piers are subjected to multi-directional deformation with torsion. This 
tends to cause complex flexural and shear failure in the piers. Another problem is due to the 
nonlinearity of deck at expansion joints; Fig. 5.38 shows a typical model of the expansion 
joints. The expansion joints are generally of rubber pads, shear key and tie bars, and the 
nonlinearity is associated with slippage and collisions which take place between girders.  

 
Fig. 5.38 Typical Expansion Joint 

 
Fig. 5.39 shows the force vs. relative displacement relation of the expansion joint in 

which a positive relative displacement corresponds to an opening of the joint gap while a 
negative relative displacement corresponds to a closing. When the expansion joint undergoes 
an increasing relative movement in the positive direction, the rubber pad first deforms under 
shear action providing resistance to the motion. Then, slippage takes place when the applied 
force reaches the maximum friction force which can be developed on the contact plane of the 
expansion joint (Fig. 5.39 (a)). When the positive relative movement reaches the tie gap ∆T , 
the pair of tie bars begin to resist further opening of the joint gap. This resistance builds up 
linearly with joint separation until the yield strength of the tie bars is reached; then, yielding 
under constant force takes place (Fig. 5.39 (b)). When the expansion joint undergoes a relative 
movement in the negative direction, the rubber pad deforms and resists the motion in the same 
manner described above for the positive direction. However the tie bars do not resist motion in 
this direction. If the expansion joint undergoes further negative movement reaching the seat 
gap ∆ G , collisions take place between the girders.  

To exhibit such effect of the nonlinearity of expansion joints, a series of model excitation 
tests was made (Williams and Godden 1979). Fig. 5.40 shows the model bridge. This was 
originally based on a symmetrical simplified version of the east-half of the 5/14 South 
Connector Overcrossing, and was composed of three subassemblages, a center girder/column 
system and two side girder /column /abutment systems. These assemblages were tied together 
by two expansion joints of the type shown in Fig. 5.38 placed in symmetrical position. The 
fundamental natural frequency of the model was measured as 5 Hz, 6.6 Hz and 9-11 Hz in 
longitudinal, transverse and vertical directions, respectively.  



 
Fig. 5.39 Force vs. Relative Displacement Relation of Expansion Joint 

 
Fig. 5.40 Experimental Model 

 
Fig. 5.41 shows the response of the model when it was subjected to a low intensity 

artificially generated ground motion with a peak acceleration of 0.11 g in the transverse 
horizontal direction. Analytical responses which will be described later are also presented for 
comparison. During the test, collisions of the girder did not occur since the relative response 
displacements at the expansion joints remained below the initial joint gap. The joint restrainer 
tie bars however resisted joint separation. Since the tie bars resisted only joint separation, the 
displacement response was small in the outward or positive direction but large for the inward 
or negative direction. 

Fig. 5.42 shows the response of the model when it was subjected to high intensity 
horizontal and vertical excitations with peak accelerations of 0.47 g and 0.27 g, respectively. 
Analytical responses which will be described later are also presented for comparison. The 
same horizontal acceleration used for the low intensity excitation was adopted for this test by 
increasing the intensity. The vertical excitation was prescribed by artificially generated 
accelerograms with peak acceleration approximately one half of the peak horizontal excitation. 
Multiple collisions of the girders together with yielding of the joint restrainer bars took place 
at the expansion joints. As with the low intensity excitation, the responses of displacement, 
especially at the expansion joints, were unsymmetrical. However, they were of a type opposite 
to that developed in the low intensity excitation test, i.e., the motions were large in the 
outward direction and small in the inward direction. This type of response was caused by 
closure of the expansion joints during inward motion causing stiff arch action to take place 



between the abutments, while motion in the outward direction was resisted mainly by the more 
flexible tie bars.  

 
Fig. 5.41 Experimental and Analytical Reponses of Model Bridge Subjected to a 

Low-intensity Excitation 



 
Fig. 5.42 Experimental and Analytical Reponses of Model Bridge Subjected to a 

High-intensity Excitation 
 
 

2) Analytical Model of Expansion Joints 
Because the characteristics of expansion joints have a major influence on the seismic response 
of curved bridges, they must be correctly modeled. A nonlinear analytical model as shown in 
Fig. 5.43 well expresses the nonlinear behavior of the expansion joints. This model includes 
relative translational and rotational degree of freedom, elastoplastic joint restrainer tie bars, 
acting in tension, impact and Coulomb type friction with slippage (Tseng and Penzien 1973, 
Kawashima and Penzien 1976).  



 
Fig. 5.43 Analytical Model of Expansion Joint 

 
Longitudinal collisions are defined as taking place at points A and B (Fig. 5.43) when the 

relative displacement between the two end diaphragms uAx  and uBx  close the joint gap ∆ G  
with a non-zero velocity. At the instant collision takes place, the longitudinal impact springs 
with large stiffness kI , which are attached to one end diaphragm leaving a small gap ∆ G  
with the other end diaphragm, start to resist the motion. A collision is completed when 
rebound occurs and the relative displacement between the two diaphragms becomes equal to 
the joint gap ∆ G . The contact force acting at points A and B can be written from Eq. (5.22) as 

PAI = kI uAx + ∆G (uAx + ∆G ); PBI = kI uBx + ∆G (uBx + ∆G )       (5.25) 

where 

  
uAx + ∆G =

1 ⋅ ⋅ ⋅ ⋅ ⋅ uAx + ∆G < 0
0 ⋅ ⋅ ⋅ ⋅ ⋅ uAx + ∆G ≥ 0

 
 
 

 

  
uBx + ∆G =

1 ⋅ ⋅ ⋅ ⋅ ⋅ uBx + ∆G < 0
0 ⋅ ⋅ ⋅ ⋅ ⋅uBx + ∆G ≥ 0

 
 
 

                    (5.26) 

 
If it is assumed that uAx + ∆G  and uBx + ∆G

 do not change sign during a time interval 
∆t , the change of contact force during a time interval can be expressed as 

 
∆PAI = kI uAx + ∆G ∆uAx

; ∆PBI = kI uBx + ∆G ∆uBx
       (5.27) 

 
Coulomb friction forces are developed at contact points A and B when the expansion joint 

undergoes longitudinal relative displacement and when the vertical contact forces are 
compressive. The friction force at each point A and B always acts in the direction opposite to 
the relative velocity as a pair of self-equilibrating forces. When the expansion joint does not 
undergo longitudinal relative displacement, each friction force can have a magnitude 
anywhere between its maximum and minimum values. The magnitude of a friction force 
depends on the magnitude of other forces acting on the expansion joint.  



Such characteristics can be represented by a rigid-plastic hysteretic force-relative 
displacement model. To avoid numerical instability caused by a sudden change in the 
Coulomb friction force at zero relative velocity, the force is modeled by the elastoplastic 
hysteretic force-relative displacement model. The change of Coulomb force ∆CAx

 and ∆CBx
 

acting at points A and B during the time increment   ∆t  can be expressed when the vertical 
compressive contact force   F A z  and   F B z  are constant during a time interval, i.e. 
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                  (5.28) 

 
where uAx

E  and uBx
E  are the current slippage at points A and B, respectively, and uAx

S  and 
uBx

S  are the elastic deformations at points A and B, respectively, as given by uAx
E = ν FAz / kC

 
and uBx

E = ν FBz / kC
 where ν  is a constant coefficient of Coulomb friction, and 

 

  
FAz =

1 ⋅ ⋅ ⋅ ⋅ ⋅ FAz < 0
0 ⋅ ⋅ ⋅ ⋅ ⋅ FAz ≥ 0

 
 
 

; 
  
FBz =

1 ⋅ ⋅ ⋅ ⋅ ⋅ FBz < 0
0 ⋅ ⋅ ⋅ ⋅ ⋅ FBz ≥ 0

 
 
 

             (5.29) 

 
Eqs. (5.27) and (5.28), after transforming the relative expansion joint displacement from 

local to global co-ordinate, can be used to assemble the total equilibrium equation of motion in 
incremental form. The equation of motion for an n degree of freedom system representing 
dynamic equilibrium can be solved by Eq. (2.47). Numerical integration can be used by Eq. 
(2.63) if required.  
 
3) Analytical Prediction of Seismic Response 
The seismic response of the model bridge was computed by the analytical idealization of the 
expansion joint shown above. Figs. 5.41 and 5.42 show the comparison of analytical and 
experimental responses for the low and high intensity excitations, respectively. In the low 
intensity excitation, the effect of restrainer bars are well represented in the analysis. Because 
the force induced in the tie bars is less than the yield strength, yielding did not develop.  

On the other hand, the effect of multiple collisions and constraints of the tie bars are 
realistically represented in the high intensity excitation. Several yielding of the tie bars 
developed maximum ductility factor, defined as the ratio of the maximum tie elongation to its 
yield elongation, equal to approximately 4 and 12 for expansion joints No. 1 and No. 2, 
respectively. The maximum contact force of approximately 4000 lb was induced at the 
expansion joint No. 2. 

It is interesting to see how accurately the dynamic response of model bridge subjected to 
high intensity excitation can be predicted by linear analysis in which the expansion joint is 
idealized only by a set of linear springs, disregarding the effect of impacts, slippage and 
yielding of restrainers. Fig. 5.44 compares the computed response by linear analysis and the 
test results. It is apparent that the predicted response is significantly different from the 
measured response both in the magnitude of peak amplitude and in the frequency 
characteristics. Several collisions within the joints and the yielding of restrainers do not allow 
a good correlation by linear analysis.  



It is therefore important to correctly idealize the structural integrity of bridges including 
nonlinear behavior at expansion joints to realistically predict the seismic response of curved 
bridges. 

 
Fig. 5.44 Linear Correlation for Model Bridge Subjected to a High-Intensity Excitation 

 
 
5.6 Seismic Response of Skewed Bridges 
Skewed bridges exhibit unique seismic response during an earthquake due to the strut action 
(Chen and Penzien 1975, Liu, Rieles, Imbsen, Priestley and Seible 1990, Priestley, Seible and 
Calvi 1996, Watanabe and Kawashima 2001). When a single skewed bridge collide with an 
abutment as shown in Fig. 5.55, a moment M is induced at the center of gravity as 

BBAA eIeIM ⋅+⋅=                         (5.30) 

where AI  and BI  represent impact forces at the acute and obtuse edges, respectively, and 
Ae  and Be  represent the distance of eccentricity for AI  and BI , respectively, given as 

2/)
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θ

θ
dleA +⋅=  

2/)
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θ

θ
dleB −⋅=                        (5.31) 

where θ  represents the skew edge, and  l  and d  represent the length and width in the 
longitudinal and transverse directions, respectively. The moment M yields a rotation of the 
skewed bridge ϕ  (positive for clockwise rotation) as 



l
vv ij −

=ϕ                             (5.32) 

where iv  and jv  represent displacement of the bridge at i and j, respectively, in the 
transverse direction. In the following, the direction along the two ends of skewed bridge and 
the direction perpendicular to the direction along the two ends are referred as y direction 
(skewed transverse direction) and x direction (skewed longitudinal direction). 

 
Fig. 5.55 Rotation of Skewed Bridge Resulting from Collision with Abutment 

 
Rotation of a skewed bridge also occurs when stiffness of the substructures is different as 

shown in Fig. 5.56. Different flexural displacements of two substructures resulting from 
different stiffness develop different displacement in the transverse direction. Representing the 
displacements at the both ends of the deck in the y axis as 1pu  and 2pu , the rotation of the 
deck is written as 

l
uu pp θ

ϕ
cos)( 21 ⋅−

=                              (5.33) 

 
Fig. 5.56 Rotation of Skewed Bridge Resulting from Different Stiffnesses of Substructures 

 
Watanabe and Kawashima (2001) analyzed the effectiveness of cable restrainers which are 

provided in three ways as shown in Fig. 5.57; (1) two restrainers are provided along x 
direction at both sides (Type 1), (2) two restrainers are provided along the longitudinal 
direction at both sides (Type 2), and (3) two restrainers each (four restrainers in total) are 
provided along y direction at both sides (Type 3). The Type 3 restrainers intends to prevent the 
deck movements along y direction at both sides, but the movements in x direction is allowed 
to take place.  

 



 
(a) Type 1    (b) Type 2 

 
(c) Type 3 

Fig. 5.58 Rotation of Skewed Bridge Resulting from Tension Forces by Restrainers 
 
The moments which are induced around the center of gravity of the skewed bridge by the 

Types 1, 2 and 3 restrainers, 1RM , 2RM , and 3RM , respectively, become as shown in Fig. 
5.58, and they are written as 

 
)(1 BBAAR eReRM ⋅+⋅−=                          (5.34) 
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where AR  and BR  are forces pulled by two restrainers when the bridge rotates 
counterclockwise, ′

AR  and ′
BR  are forces pulled by two restrainers when the bridge rotates 

clockwise, and 
 

θsin
2
ldC =                               (5.37) 

 
If RRR BA == , 1RM , 2RM  and 3RM  by Eqs.( 5.34), (5.35) and (5.36) become as 
 

θcos1 RlM R =  
02 =RM                             (5.38) 

θsin3 RlM R =  
 

Consequently, in a skewed bridge with a skewed edge 50=θ  degree, RlM R 64.01 = , 
02 =RM , and RlM R 76.03 = . Since AR  is not necessarily equal to BR  in reality, Eq. 

(5.38) provides only an estimate for the magnitude of the moments induced in skewed bridges 
by restrainers.  



An analytical result on the effectiveness of the above three restrainers are described below 
for a 200 m long skewed bridge with a skewed edge θ  of 50 degrees as shown in Fig. 5.59. 
The bridge consists of a 3 span continuous decks (deck 1), 2 simply supported decks (decks 2 
and 3), and substructures. Fig. 5.60 shows a three dimensional discrete model in which 
poundings between the abutments and the end of the decks (decks 1 and 3) are idealized by 
impact springs using Eqs. (5.25) and (5.26). A restrainer resists only tension and its force vs. 
relative displacement relation is idealized as shown in Fig. 5.61 (a). Since a pair of restrainers 
is set at both sides in the type 3, a pair of restrainers is idealized as shown in Fig. 5.61 (b). The 
model is subjected to the NS and EW components of the JMA Kobe Observatory in the 1995 
Kobe earthquake (refer to Fig. 1.2) as shown in Fig. 5.62.  

 

 
Fig. 5.59 Skewed Bridge Analyzed for the Effectiveness of Restrainers 

 

 
Fig. 5.60 Analytical Model of Skewed Bridge 

 



 

(a) Types 1 and 2   (b) Type 3 
Fig. 5.61 Modeling of Cable Restrainers 

 

 
(a) NS component   (b) EW Component 

 
(c) Response Accelerations with ξ =0.05 

Fig. 5.62 Ground Motion (JMA Kobe Observatory during the 1995 Kobe Earthquake) 
 
Fig. 5.63 shows how three decks with the type 1 restrainers move, rotate and collide 

among the three decks and the two abutments during the first 1.5 s (between 1.5 s and 3 s). 
The gap of the restrainers G∆  in Eq. (5.26) is 50 mm. Fig. 5.64 shows an example of relative 
displacements, impact forces and restrainers force between decks and the rotation of deck 1 
between the 1.5 s. The numbers in Fig. 5.64 correspond to the numbers in Fig. 5.63. The deck 
1 first collides with the abutment 1 at 1.99 s (No. 1, refer to Fig. 5.63). This collision continues 
until 3.13 s with the peak impact force of 6MN, which corresponds to 45% of the weight of 
deck 1 of 13.55 MN. This collision results in an anticlockwise rotation of the deck 1 (refer to 
Fig. 5.64 (3)) based on the mechanism shown in Fig. 5.55. The anticlockwise rotation then 
results in separation of the deck 1 from the abutment 1. When the separation reaches the gap 

G∆ , the restrainer at the acute edge first starts to resist further separation at 2.28 s (No. 6) and 
the restrainer at the obtuse edge follows this at 2.34 s (No. 7). The restrainers at the obtuse and 



acute edges continue to pull the deck 1 until 2.39 s and 2.59 s with the maxim restrainer force 
of 3.8 MN and 7.5 MN, respectively. As shown in Fig. 5.64 (3), this action of restrainers 
changes the anticlockwise rotation to a clockwise rotation (No.7). At the instance of 2.34 s 
(No. 7), the restrainer between the acute edge of deck 1 and the obtuse edge of deck 2 starts to 
work with the maximum force of 2.3 MN. Furthermore, the obtuse edge of the deck 1 collides 
with the acute edge of the deck 2 at 2.52 s (No. 9), which results in the maximum impact force 
of 2.5 MN. Those two actions accelerate the clockwise rotation of the deck 1. I this manner, 
very complex responses occur resulting from actions of restrainers and collisions. An action 
results in another action, thus responses occur progressively.  

 
        P1   Deck1               Deck2  Deck3  P2 

 
Fig. 5.63 Response of Skewed Bridges with Type 1 Restrainers 
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(a) Impact force between Abutment 1 and Deck 1 
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(b) Relative Displacement between Abutment a and Deck 1 in y Direction 

(1)  Left End 
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(a) Restrainers Force between Decks 1 and 2 

1.5 2 2.5 3

(7)

(8)

(9)
15

0

-15

La
te

ra
l F

or
ce

(M
N

)

Time (sec)

Cable Tension

Pounding 
Force

 
(b) elative Displacement between Decks 1 and 2 in y Direction 

(2) Right End 
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(3) Rotation 

Fig. 5.64 Response of Deck 1 with Type 1 Restrainers 
 
Based on the similar analyses, Fig. 5.65 shows the displacements of the three decks at 

typical instances. Since relative displacements along y direction between two adjacent decks 
are not restricted in the type 2 restrainers, each deck rotates in a similar edge in the bridges 
with the type 2 restrainers. On the other hand, relative displacements along y direction 
between two adjacent decks are restricted in the types 1 and 3 restrainers, the magnitude of 
rotation of the three decks change smoothly. In particular, the rotations of the decks with the 
type 3 restrainers are small. Fig. 5.66 shows the dependence of rotation modes of three decks 
on the type of restrainers. 

It is important in skewed bridges to restrict rotations since the rotations result in the 
movement of the decks in longitudinal direction as shown in Fig. 5.67, which dislodges the 
decks from their supports.   

 



 

(a) Type 1 Restrainers (t=3.62 s) 

 
(b) Type 21 Restrainers (t=3.34 s) 

 
(c) Type 3 Restrainers (t=3.68 s) 

Fig. 5.65 Displacements of Three Decks at typical Instances 
 

(a) Types 1 and 2 Restrainers 
(b) Type 2 Restrainers 

Fig. 5.66 Rotation Modes 
 

 
Fig. 5.67 Longitudinal Movement of Decks Resulting from Rotations 

 
 

5.7 Seismic Response of Bridges Supported by Pile Foundations 
 
1) Significance of Pile Foundations 
Pile foundations are commonly used in bridges at soft soil sites. Since piles are flexible than 
other structural members such as deck and columns, the soil-structure interaction effect is 
predominant. Pile foundations are often idealized by a set of springs which represents the 
stiffness and restoring force of piles in an analysis with emphasis on the response of columns 
and superstructures. However an analytical model including piles and surrounding ground is 
required for the analysis of pile foundations.  

There exist various idealizations for pile foundations with different levels of 
sophisticateness. Failure of pile foundations occurs in three ways, i.e., (1) failure of lateral 
bearing capacity of the surrounding ground, (2) punching failure of the ground at the bottom 
of piles and pull-out of piles from the ground, and (3) failure of piles due to shear and/or 
flexure. In the (1) above, the lateral stiffness and the lateral bearing capacity of the ground 
around piles are important in an idealization of pile foundations. The vertical stiffness and the 
bearing capacity of the ground are important in the (2). There are many uncertainties in the 
evaluation of the properties of the ground. A pile foundation is generally idealized as shown in 
Fig. 5.68. Piles are supported by lateral and vertical soil springs which represent the 
confinement by the surrounding soils.   



 
Fig. 5.68 Analytical Model of Pile Foundations 

 
 
2) Stiffness and Bearing Capacities of the Ground 

 In-situ loadings tests have been conducted at many sites. For example, Kimura, Kosa and 
others conducted a lateral loading test for a single pile and a pile foundation consisting of two 
piles at Umeda bridge (Kimura, Kosa, Ito and Sakamoto 1998). The piles are about 20 m long 
cast-in-place reinforced concrete piles with a diameter of 1m. Fig. 5.69 shows lateral force vs. 
lateral displacement hystereses for a single pile and a pile foundation. Based on various 
loading test results, the lateral force vs. lateral displacement hystereses are provided as a 
bilinear hysteresis shown in Fig. 5.70 (1). The bearing capacity HyP  and the lateral stiffness 

oK  are given as 
 

lDPP uppHy ∆⋅⋅⋅= αη                          (5.39) 

hkk klDK ⋅∆⋅⋅⋅= αη0                          (5.40) 
 
where, pµ  and kη : modification factors for the group pile effects for the bearing capacity 
and the lateral stiffness, respectively, pα  and kα : modification factors for bearing capacity 
and the lateral stiffness, respectively, of a single pile, uP : Coulomb’s  passive soil pressure, 

hk : subgrade reaction of the ground, D : diameter of pile, and l∆ : distance between soil 
springs.  

 



 (a) Single Pile (b) Pile Foundation consisting of Two Piles 
Fig. 5.69 Lateral Force vs. Lateral Displacement Hysteresis based on In-Situ Loading Test at 

Umeda Bridge (Okahara, Kimura, Takagi and Ohori 1993) 

 
 (a) Left piles  (b) Center piles  (c) Right piles 

(1) Lateral Soil Springs 

 
 (a) Bottom  (b) Other than Bottom 

(2) Vertical Soil Springs 
Fig.5.70 Hysteresis Models of Soil Springs 

The parameters kα  and kα  have been studied based on loading test results as shown in 
Table 5.2. The parameters depend on the group pile effect. Consequently, it is recommended 
in the design as (Japan Road Association 2002) 
 







≤
=⋅

sitessandy                       0.3

sitesclayey                                 5.1

D
ldpp αη                   (5.41) 

3/2=pη  and kα =1.5                        (5.42) 

where dl  represents a distance between adjacent two piles in group piles.  
 

Table 5.2 Parameters kα  and pα  based on In-Situ Loading Test of Pile Foundations 
(Yabe 2000) 

(a) Piles in Sandy Soil 
No. Diameter and 

Thickness (mm) 
Pile Length 
(m)  

(1) Max. Loaded Lateral 
Displacement (mm) 

(1)/Pile 
Diameter(%) 

pα  kα  

1 φ 190.7x5.3 4.5 25.5 13.3 2 1.5 
2 φ 318.5x6.9 15.0 38.6 12.1 6 6 
3 φ 609.6x9.5 21.0 70.0 11.5 3.5 1.5 
4 φ 812.8x15.0 17.0 186.4 22.9 4.5 1.5 
5 φ 800x16.0 46.0 84.9 10.6 4 4 



6 φ 600x12.7 45.0 46.0 7.7 3.5 1.5 
7 φ 812.8x12.7 15.0 68.0 8.4 4 2.5 
8 φ 600.0x16.0 39.0 87.8 14.6 4 2 
9 φ 2000x22 36.5 165.7 8.2 3 1.5 

 
(b) Piles in Clayey Soil 

No. Diameter and 
Thickness (mm) 

Pile Length 
(m)  

(1) Max. Loaded Lateral 
Displacement (mm) 

(1)/Pile 
Diameter(%) 

pα  kα  

1 φ 812.8x14.0 30.7 70.0 8.6 2.5 1.5 
2 φ 1000x27.2 20.0 96.4 9.6 1 2.5 
3 φ 1500x13.0 33.1 231.6 15.4 1 1.5 
4 φ 2000x22.0 51.5 255.9 12.8 2 6 
5 φ 812.8x9.0 40.0 50.0 8.3 1.5 1.5 
6 φ 609x12.7 18.0 134.6 22.1 3 0.5 
7 φ 508.8x9.5 23.0 56.0 11.0 1 1 

 
 
The vertical stiffness of soil springs consists of the deformation under the piles and the 

deformation along the piles (skin friction). They have not yet clarified independently, and as a 
result they are evaluated in the combined manner including the stiffness of piles as 

 

L
EAKV α=                              (5.43) 

where, 
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where EA : axial rigidity of pile, L  and D : length and diameter of pile, and α : empirical 
modification factor to fit to the field loading test results.  

Eq. (6.44) was derived based on the yielding stiffness of piles determined from 20-40 
in-situ loading tests for each type of piles. Since Eq. (5.43) includes the stiffness of soils 
along piles, vertical springs with the stiffness by Eq. (5.43) are provided at the bottom of 
piles. 

The compression and tension capacities, yCP  and yTP , respectively, are given as 
 

{ }CpCyC PNP ,min=                           (5.45) 

{ }TpTyT PNP ,min=                           (5.46) 
where, 

∑+= iidC fLUAqP                           (5.47) 



∑= ilT fLUP                            (5.48) 
 

where pCN  and pTN : capacity of pile for compression and tension, respectively, CP  and 
TP : capacity of bearing capacity of ground for compression and tension, respectively, 

U = Dπ , Aqd ⋅ : bearing capacity at the bottom of the ground, if : skin friction between i-th 
and (i+1)th soil springs, and iL : distance between i-th and (i+1) th soil springs.  

The capacities of a pile for tension and compression, pTN  and pCN , respectively, are 
evaluated as 

 
sypT AN σ=                              (5.49) 

sycckpC AAN σσ += 85.0                    (5.50) 

Soils springs for footings are idealized by elastic perfect plastic, and the lateral stiffness 
0K  and bearing capacity HyP  of a footing are given as 

 
he klBK ⋅∆⋅=0                           (5.51) 

lDPP upFHy ∆⋅⋅⋅= α                        (5.52) 
where 

0.35.00.1 ≤+=
e

pF B
z

α                        (5.53) 

 
where eB : width of footing, and z : depth from the ground surface.  

 
3) Ultimate Mode of Pile Foundations 

Under a seismic action, the ultimate modes of a pile foundation are (1) failure of piles, (2) 
the demand for lateral force becomes larger than the capacity of the surrounding ground 
resulting in excessive lateral displacement of the pile foundation, (3) the demand for 
compression becomes larger than the capacity in compression resulting in an excessive 
rotation of the pile foundation, (4) the demand for tension becomes larger than the capacity in 
tension resulting in pulling-out of piles. Which modes are predominant depends on the design 
procedures and determination of the capacities.  

The yield of a pile foundation is defined at the stage when either of the following first 
occurs; (1) all piles at one pile line yield or (2) the compression at the bottom of a pile 
exceeds the capacity for compression Aqd ⋅  because lateral displacement of the pile 
foundation sharply increases after this stage based on a number of in-situ loading tests (Japan 
Road association 2002). 

 
 

4) Seismic Response of a Bridge supported by Pile Foundations 
Based on the above idealization, an example of seismic response of two bridges supported by 
pile foundations are presented here. Analyzed is two plate girder bridges (A-bridge and 
B-bridge) supported by 10 m tall reinforced concrete columns and pile foundations as shown 
in Fig. 5.71. Five elastomeric bearings are used to support the deck per column. The 
superstructure and the column are identical between the A-bridge and B-bridge. The ground 
consists of alternatives of sandy and clayey soils at A-bridge, while it consists of thick clayey 
soils at the B-bridge. The natural period of the ground is 0.38 s and 1.17 s at the A-bridge and 
B-bridge, respectively. The pile foundation consists of 3x3 cast-in-place reinforced concrete 
piles with a diameter of 1.2 m. The piles are 14.9 m and 30.4 m long at the A-bridge and 



B-bridge respectively.  

 
Fig. 5.71 Bridge supported by Pile Foundations 

 
A push over analysis is conducted to evaluate the capacity of the pile foundation. The pile 

foundation is idealized as shown in Fig. 5.72 based on the above analytical modeling. The 
column hysteretic behavior is idealized by the Takeda degrading model (Takeda, Sozen and 
Nielsen 1970). A static lateral force LF  and a bending moment )( FPL HHFM +⋅= , in 
which PH  and FH  represent the height of the column and the footing, respectively, are 
applied at the bottom of the footing of the analytical model. As a consequence, the lateral 
force vs. lateral displacement hystereses at the gravity center of the deck are obtained as 
shown in Fig. 5.73, in which lateral coefficient Fk  defined as  
 

e

L
F W

Fk =                                  (5.54) 



 
Fig. 5.72 Analytical Model of Pile Foundation for Push Over Analysis 

 
where, 

PUe WWW 5.0+=                            (5.55) 

where UW  represents the tributary weight of the deck and PW  represents the weight of the 
column.  



The deck displacement consists of the following contributions 
 

BCFFt uuHuu ++⋅+= θ                          (5.56) 
 

where Ftu  and Fθ : translation and rotation of the pile foundation, respectively, Cu : deck  
response displacement resulted by the column response, and Bu : deck response displacement 
resulted from bearing deformation. Based on Fig. 5.73, the pile foundations undergo inelastic 
hystereses after experiencing the pull-out, yield, and push-in of the piles. Based on the 
definition presented in 3), the pile foundations yield at the lateral coefficient of 0.85 and 0.79 
at the A-bridge and B-bridge, respectively. 

 

Fig. 5.73 Lateral Force vs. Lateral displacement Hystereses at Gravity Center of Deck 

For dynamic response analysis, the pile foundations are idealized as shown in Fig. 5.74. 
This model is essentially the same to the model shown in Fig. 5.72, but the deck, the column, 
the footing and the piles are idealized as a model. The response of surrounding ground is 
idealized by a one-dimensional model with the Hardin-Drnevich type nonlinear hysteresis 
(Hardin and Drnevich 1972). Two design spectrum compatible ground accelerations are used 
as the input ground motions at the ground surface. Bedrock ground motions are computed 
from the ground surface accelerations by SHAKE (Schnabel, Lysmer and Seed 1972), and 
those computed bedrock ground motions are used as input ground motions for the 
one-dimensional soil column models. The computed response of the ground is then used for 
the multiple excitation of the deck, column, footing and pile system.  



 
Fig. 5.74 Analytical Model for Dynamic Response Analysis 

 
Fig. 5.75 shows the response displacements of A-bridge. The response displacement is 

mostly developed by the column deformation Cu  in Eq. (5.56). The deck response 
displacement resulted from of the foundation responses Ftu  and HF ⋅θ  is 10 mm and 27 
mm, respectively. Fig. 5.76 shows the restoring forces of a pile on the left line and the 
surrounding ground. The pile stays in elastic, and the vertical pull-in force does not reach its 
yielding force by Eq. (5.45). The lateral soil springs surrounding the piles has a hysteretic 
behavior. On the other hand, Fig. 5.77 shows the response displacements of B-bridge. Since 
the soil is weaker than Bridge-A, the response displacement contributed by the foundation 
responses Ftu  and HF ⋅θ  is 37 mm and 31 mm, respectively, which are larger than those 
values of A-bridge.  
 



 
Fig. 5.75 Response of A-Bridge 

  
 (a) Moment vs. Curvature Hysteresis at (b) Vertical Force vs. Vertical Displacement 
 the Top of a Pile on the Left Line at the Bottom of a Pile on the Right Line 

 
(c) Lateral Force vs. Lateral Displacement Hysteresis of a Soil Spring Surrounding a Plie 

Fig. 5.76 Hysteretic Behavior of Piles and Ground 
 



 
Fig. 5.77 Response Displacements of B-bridge 

 
5.8 Seismic Response of Bridges supported by Spread Foundations 
 
Spread foundations (direct foundations) are well used for bridges at the sites with high bearing 
capacity. They are first designed for dead weights of superstructures and substructures and 
then the performance for seismic effects are checked as shown in Fig. 5.78. The seismic effect 
is critical for sizing of the foundations as the seismic force increases. Under the static loads 
W , the footing with width l  settles with the magnitude of SFv  as 
 

lk
Wv
sv

SF ⋅
=                             (5.57) 

 
where svk  represents the stiffness of vertical soil springs per unit width. Winkler type soil 
springs are generally assumed in design purpose.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

(a) Static Load 

 
(b) Foundations without Uplift 

 
(c) Foundations with Uplift 

Fig. 5.78 Reactions under Spread Foundation 
 

Under a seismic lateral force, the footing starts to rotate from the displaced position. Safety 
for sliding, overturning and bearing capacity of soils under the footing is generally checked. If 
one disregards the lateral displacement, as the seismic lateral force increases, the rotation of 
footing Fθ  increases and an upward displacement at the left edge reaches the static 
settlement, an uplift starts to occurs. If the foundation rotates around central axis, the stiffness 
of rotating spring θFK  may be written as 
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In the evaluation of seismic response of spread foundations, it is common that the spring 
stiffness of rotation is obtained assuming that uplift does not occur. However, this assumption 
is not valid under a strong ground motion excitation.  

An example of this effect is shown here for a 10 m tall reinforced concrete column 



supported by a 7 m long and 6.5 m wide spread foundation as shown in Fig. 5.79 (Kawashima 
and Hosoiri 2002). This is a column which support 200 m long 5 span continuous decks. Since 
soil condition and column heights are nearly uniform along the entire bridge axis, only a 
column and a part of the superstructure which is supported by the column is analyzed here.  

The column and the foundation are idealized by a discrete model as shown in Fig. 5.80, in 
which the footing is assumed to be supported by soil springs. When the footing separates from 
the rebounded surface of the underlying ground as a result of rotation, the soil springs where 
the separations occur do not resist tension as shown in Fig. 5.81. When soil springs resist 
tension even after separations occur between the footing and the rebounded surface of 
underlying ground, a soil spring which resist rotation determined by Eq. (5.58) is used to 
idealize rotation of the footing. The plastic hinge of the column is idealized by Takeda 
degrading nonlinear element. The JMA Kobe Observatory ground motion during the 1995 
Kobe earthquake (refer to Fig. 1.1 (a)) is used as an input ground motion.  

 

(1) Front       (2) Side     (3) Soil 
Fig. 5.79 Column and Spread Foundation Analyzed 

 

(a) With Tension  (b) No Tension 
Fig. 5.80 Analytical Model 



 

Fig. 5.81 Soil Springs which do not resist Tension 
 
Fig. 5.82 shows deck acceleration and displacement, and footing rotation when the 

standard soil spring for rotation is used. The displacement of the deck u  in Fig. 5.82 consists 
of four sources as 

PfPpFFt uuhuu ++⋅+= 0θ                      (5.59) 

where Ftu : translation of the footing, Fθ : rotation of the footing, 0h : distance between the 
gravity centers of the deck and the footing, Ppu : displacement of the deck resulted from the 
plastic deformation of the column, and Pfu : displacement of the deck resulted from elastic 
flexural deformation of the column. In the deck displacement shown in Fig. 5.82 (b), the 
displacement response corresponding to 0hF ⋅θ  is also presented for evaluate of the effect of 
the footing rotation. Since the soil springs underlying the footing resist not only compression 
but also tension, rotation of the footing Fθ  is only 0.003 radian, resulting that the deck 
displacement by the footing rotation 0hF ⋅θ  is only 0.04 m, which is less than 20% of the 
total deck displacement u  of 0.22 m. The peak deck acceleration is 6.66 m/s2. Fig. 5.83 
shows the moment vs. curvature hysteresis at the plastic hinge of the column. The column 
yields, and the peak curvature is 0.016/m resulting in the peak curvature ductility factor of 14.  
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(a) Deck Acceleration (b) Deck Displacement 
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(c) Footing Rotation 
Fig. 5.82 Responses of the Bridge when Standard Rotation Soil Spring is Used 
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Fig. 5.83 Moment vs. Curvature Hysteresis at the Plastic Hinge of the Column 
 

On the other hand, Fig. 5.84 shows responses of bridge when the soil springs underlying 
the footing do not resist tension. The peak deck displacement is 0.28 m which is nearly the 
same with the above analysis. The peak footing rotation Fθ  is 0.019 radian which is about 6 
times larger than that in the above analysis. Since the footing rotation is large, the deck 
displacement resulting from the rotation of the footing 0hF ⋅θ  is 0.22 m which is 80% of the 
total deck displacement u . Fig. 5.85 shows the moment vs. curvature hysteresis at the plastic 
hinge of the column. The peak curvature is 0.003/m which is only about 20% of the value 
presented above. The larger rotation of the footing results in smaller plastic deformation at the 
plastic hinge of the column when tension of the soil springs under the footing is ignored. It is 
interesting to note that the footing rotation has an isolation effect to the column.  
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(a) Deck Acceleration (b) Deck Displacement 

-0.025

0

0.025

0 10 20 30

R
ot

ai
on

 (r
ad

)

Time (sec)  

 

(c) Footing Rotation 
Fig. 5.84 Responses of the Bridge when Soil Springs do not resist Tension 
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Fig. 5.85 Moment vs. Curvature Hysteresis at the Plastic Hinge of the Column 
 
Fig. 5.86 shows how the footing uplifts. An uplift of the footing starts to occur from an 

edge followed by next uplift from the other edge, thus uplifts repeat alternatively from one 
another during strong excitation. Uplift does not occur at the entire zone under the footing at 
any time during excitation.  

Since rocking response has an isolation effect to the column, size of the footing is 
intentionally reduced from the original size of 7m by 6.5 m to 5m by 4.5 m. Fig. 5.87 shows 
responses of the bridge. About 95% of the total deck displacement results from the footing 
rotation. The column stays in elastic. Fig. 5.88 shows how the footing rotation increases and 
the plastic curvature of the column decreases as the footing size decreases.  

Although the rotation of spread foundations with uplifts from the underlying ground is 
effective to reduce plastic deformation of columns, the uplift results in an increase of reaction 
at the edge. If bearing capacity of the underlying ground is insufficient, plastic deformation 
may occur in the soils. Fig. 5.89 shows such an example of rotation of a 7 m by 6.5 m footing 
when the bearing capacity of the underlying ground has a yield at 2 MPa. Reaction of soils 
saturates at 2 MPa, which results in the increase of footing rotation from 0.039 radian 
(without yield) to 0.043 radian (with yield). It is noted however that protection of underlying 
ground is required for not having accumulation of plastic deformation of underlying ground 
(Priestley, Seible and Calvi 1996). 
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(a) Uplift at the Left and Right Edges of Footing (b) Time History of Uplift of Hooting 
Fig. 5.86 Uplift of Footing 
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(a) Deck Displacement       (b) Time History of Uplift 
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(c) Moment vs. Curvature Hysteresis at Plastic Hinge of Column 

Fig. 5.87 Responses when Bridge is supported by 4.5 m by 5 m footing 
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Fig. 5.88 Variation of Footing Rotation and Plastic Curvature of Column 
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(a) Reaction under Footing 

-0.05

0

0.05

0 10 20 30

R
ot

ai
on

 (r
ad

)

Time (sec)  
(b) Footing Rotation when Underlying Ground does not Yield 
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(c) Footing Rotation when Underlying Ground Yields 

Fig. 5.89 Effect of Yielding of Underlying Ground at 2 MPa 
 
 


