
 
5. SEISMIC RESPONSE OF BRIDGES 

 
 
5.1 Seismic Response Characteristics of Standard Bridges 
 
Fig. 5.1 shows a response acceleration on the top of a column of Itajima Bridge during the 
M7.5 Hyuga-nada earthquake in April, 1968. The epicentral distance was 100 km. A ground 
acceleration at a free-field 400 m apart from the bridge is also presented. Both longitudinal 
and transverse responses were measured. As shown in Fig. 5.2, the Itajima Bridge is a 125 m 
long 5 span simply supported plate girder bridge supported by 4 caissons at columns and 2 pile 
foundations at abutments. The column and the caisson where the column responses were 
recorded are 5m tall and 15.5 m long, respectively. The peak accelerations on the ground are 
170 gal and 186 gal in the longitudinal and transverse directions, respectively, and the peak 
response accelerations on the column are 219 gal and 310 gal in the longitudinal and 
transverse directions, respectively. The column response accelerations are larger than the 
ground accelerations in both directions in this earthquake.  

 
(a) Top of the Column 

 
(b) Ground Surface 

Fig. 5.1 Response accelerations at Itajima Bridge during Hyuga-nada Earthquake in April 
1968 



 
Fig. 5.2 Itajima Bridge 

 
On the other hand, the Itajima Bridge was subjected to an M6.6 event at 11 km from the 

bridge in August 1968, and response accelerations as shown in Fig. 5.3 were obtained. The 
records were obtained at the same locations on the top of the columns and the free-field 
ground surface. The peak accelerations on the ground are 441 gal and 353 gal in the 
longitudinal and transverse directions, respectively, and the peak response accelerations on the 
column are 199 gal and 231 gal in the longitudinal and transverse directions, respectively. On 
the contrary to the previous earthquake, the column response accelerations are smaller than the 
ground accelerations in both directions in this earthquake. Consequently, amplifications of 
column responses depend on ground motion characteristics. 

 
Fig. 5.3 Response Accelerations at Itajima Bridge during an M6.6 Event in August 1968 
 
Another example of recorded responses is presented in Fig. 5.4 for Kaihoku Bridge during 

an M6.7 event in February 1978. The Kaihoku Bridge is a 285 m long 5 span continuous steel 
box girder bridge as shown in Fig. 5.5. The column responses were measured on the top of 
column 2 (P2), and the ground accelerations were measured on the surface of free-field ground 
60m from P2. The peak accelerations on the ground are 76 gal and 141 gal in the longitudinal 



and transverse directions, respectively, and the peak response accelerations on the column are 
326 gal and 197 gal in the longitudinal and transverse directions, respectively. Subsequent to 
this earthquake, the Kaihoku Bridge was subjected to the Miyagi-ken oki earthquake with a 
magnitude 7.4 at 90 km in June 1978, and response accelerations as shown in Fig. 5.6 were 
obtained. The peak accelerations on the ground are 192 gal and 288 gal in the longitudinal and 
transverse directions, respectively, and the peak response accelerations on the column are over 
500 gal and 332 gal in the longitudinal and transverse directions, respectively. Since the 
capacity of accelerograph was 500 gal, the response acceleration on the column in the 
longitudinal direction was not recorded due to an overscale. Again, the amplification of the 
column response depends on the ground motion characteristics.  

 
(a) Top of the Column 

 
(b) Ground Surface 

Fig. 5.4 Response Accelerations at Kaihoku Bridge during an M6.7 Event in February 1978 



 
Fig. 5.5 Kaihoku Bridge 

 

 
(a) Top of the Column 

 
(b) Ground Surface 

Fig. 5.6 Response Accelerations at Kaihoku Bridge during Miyagi-ken-oki Earthquake in 
June 1978 

 
At Kaihoku Bridge, response accelerations have been recorded by nine earthquakes 

including the above two earthquakes as shown in Table 5.1. Fig. 5.7 shows the peak ground 
accelerations ga  vs. peak column response accelerations pa  relations. Scattering of the 
data is not considerable, and they may be fitted as 
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Table 5.1 Peak Response Accelerations (cm/s2) at Kaihoku Bridge 
 

Ground Column No. Date Magnitude Epicentral 
Distance (km) LG TR LG TR 

1 1966.6.24 5.1 63 25.1 12.8 58.4 37.3 
2 1967.1.17 6.3 72 17.4 20.6 58.9 29.9 
3 1968.6.22 7.2 195 11.5 15.2 35.4 26.0 
4 1968.7.5 6.4 81 18.1 27.5 86.2 40.5 
5 1970.9.14 6.2 95 19.7 31.9 59.0 43.7 
6 1977.6.8 5.8 45 46.6 - 148.9 - 
7 1977.6.14 - - 15.7 - 46.6 - 
8 1978.2.20 6.7 80 76.2 141.3 326.4 197.0 
9 1978.6.12 7.4 90 192.2 288.7 >500 331.2 

 

 
Fig. 5.7 Peak Column Accelerations vs. Peak Ground Accelerations at Kaihoku Bridge 

 
It is known that the amplifications of column response accelerations depend on the type of 

foundations. Fig. 5.8 shows pa  vs. ga  relations for 135 records measured at 12 bridges. 
The type of foundations are classified into caissons, piles, and spread foundations. The 
amplifications may be fitted as 
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The amplification is remarkably large at spread foundations than other types foundations.  



 
 (a) Longitudinal (b) Transverse 
Fig. 5.8 Dependence of Amplifications of Column Response Accelerations on Types of 

Foundations 
 
 
5.2 Seismic Response Analysis of Kaihoku Bridge 
 
An analytical simulation for the records at the Kaihoku Bridge (refer to Figs. 5.4, 5.5 and 5.6) 
was conducted (Iwasaki, Kawashima, Takagi and Aizawa 1982). As described above, the 
bridge consists of a 5 span continuous steel box girder. The deck is supported by fixed bearing 
at P1 with other supports being supported by movable bearings. Viscous damper stoppers 
(shock transmission units) are provided at P2 so that P2, in addition to P1, resists seismic 
lateral force of the deck in the longitudinal direction during an earthquake. Seismic lateral 
force of the deck in the transverse direction is supported by all substructures. 

Since ground accelerations and response accelerations on the top of the column are 
recorded, the frequency response functions between the ground and the top of the column 

)( fHGP  and the coherency function )( fCPG  are evaluated as 
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where, GS , PS  and GPS  an assemble average of the power spectra of ground 
accelerations ′

GiS , power spectra of response accelerations on the top of the column ′
PiS  

and cross spectra between the ground accelerations and the response accelerations ′
GPiS  of 

each record as 
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Fig. 5.9 shows the frequency response function )( fHGP  and coherency function 



)( fCGP  averaged over the 7 records (refer to Table 5.1). The averaged frequency response 
function in the longitudinal and transverse directions may be approximated as 
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Fig. 5.9 Averaged Frequency Response Functions and Coherency Functions between the 

Ground and the Top of the Column 
 
Eqs. (5.7) and (5.8) shows that the amplification of the column P2 is limited under 6 Hz 

and 11 Hz in the longitudinal and transverse directions, respectively, and the column 
responded in a similar way with the ground under those frequencies.  

The bridge is idealized by a two dimensional discrete linear analytical model as shown in 
Fig. 5.10. The ground on the base-rock was idealized by 6 soil columns with the 
Ramberg-Osgood hystereses. After computing the soil responses by prescribing the measured 
ground acceleration at the base-rocks of 6 soil columns, the computed soil responses are 
applied to bridge through soil springs (Penzien, Scheffey and Parmelee 1964). The stiffness of 
soil springs are evaluated according to the Design Specifications of Highway Bridges. Shear 
moduli of soil which are compatible to shear stains induced during the earthquakes (Schnabel, 
Lysmer and Seed 1972) are used to evaluate the stiffness of soil springs. Damping ratios are 
evaluated by Eq. (2.6) assuming 0.02 for the deck and the columns, and 0.1 for the 
foundations. Fig. 5.11 shows major mode shapes in the transverse direction. Deformation at 
P3 and P4 is predominant in the first and the second modes, respectively. Deformation at P2 is 
predominant in the 12nd mode with the natural frequency of 7.8 Hz.  



 
Fig. 5.10 Analytical Model of Kaihoku Bridge 

 
Fig. 5.11 Major Mode Shapes in the Transverse Direction 

 
Fig. 5.12 and 5.13 show correlations of the measured accelerations on the top of the 

column (P2) for the February, 1978 earthquake and the June, 1978 earthquake, respectively. 
The measured response accelerations agree well with the measured responses.     



 
Fig. 5.12 Correlation of the Response acceleration on the Top of the Column (February, 1978) 

 

 
Fig. 5.13 Correlation of the Response acceleration on the Top of the Column (June, 1978) 

 
 
5.3 Effect of Multiple Excitation 
 
Because bridges are lengthy in the longitudinal direction, ground motions at each support are 
not identical. Because of its unique characteristics, various studies have been conducted for 
the effect of multiple excitation, or non-synchronous ground motions (Werner et al 1979, 
Somaini 1987, Monti et al 1994). As an example of such analyses, two analyses are introduced 
here. The first is a linear dynamic response analysis of a 6-span continuous bridge subjected to 
rigid and multiple excitations in the longitudinal direction (Monti, Nuti, Pinto and Vanzi 
1994). 



A deck consisting of six 50m long spans is supported by 5 piers and 2 abutments as 
shown in Fig. 5.14. The deck is transversely hinged to the piers and the abutments. Pier 
heights were varied as 7.5 m, 10 m and 15 m in the analysis to cover a wide range of bridge 
profiles. The bridges were designed elastically for a PGA of 0.42g. Three soil conditions, i.e., 
firm, medium and soft, are considered.  

 
Fig. 5.14 Bridge Analyzed for Wave Propagation Effect 

 
In the analysis, the decks, piers and abutments are idealized by a linear beam model. A 

cracked stiffness, which is obtained from the uncracked stiffness divided by a factor of 2.5, is 
assigned to the piers.   

Special attention is paid to the idealization of the spatial (non-synchronous) ground 
motions. The cross power spectral density Sij (x,ω ), which represents the correlation between 
point i and j separated by a distance x, is defined as 

γ (x,ω ) = Sij (x,ω ) / S(ω )                          (5.9) 

in which γ (x,ω ) is called a coherency function expressed as 
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where, VS : shear wave velocity; ω : angular frequency; Vapp: surface apparent velocity; and 
xL : horizontal distance projected along the direction of wave propagation. The first term on 
the right hand side of Eq. (5.10) represents the geometric incoherence in terms of the distance 
and the frequency, and the second term represents the delay in arriving times of the waves due 
to the apparent velocity of Vapp . It is noted that when VS / α → ∞ , the first term approaches 
to 1 and the incoherence is derived only from the wave traveling effect. On the other hand, 
when Vapp → ∞ , the second term approaches to 1. In this case the incoherence is a direct 
consequence of the geometric effect. The case of VS / α = Vapp = ∞  coincides with a rigid 
(incoherent) support excitation. Ground motion accelerations at each pier are numerically 
generated.  

Fig. 5.15 shows a distribution of the maximum shear forces and the shear forces 
corresponding to the quasi-static component (refer to Eq. (2.11)) computed at each pier for 
VS / α  = 300 m/s, 600 m/s, and ∞. Vapp  is varied 300 m/s, 600 m/s, 1200 m/s and ∞. The 
pier height is 10 m and moderate soil condition is assumed. The solid line in Fig. 5.15 (c) 
shows the response of the bridges subjected to a rigid ground motion.  

The distribution of the shear force at each pier depends on the coherency of ground 
motion. Under a rigid support excitation, the shear force at the intermediate piers is larger than 
that at the end piers. This is because the distribution of total shear force essentially depends on 
the first mode shape of the bridge system. On the other hand, as the incoherence in terms of 
VS / α  and Vapp  increases, the distribution of shear force becomes more flattened, because 
higher modes are excited by the multiple support excitation.  

It is important that the shear force under a rigid support excitation is systematically larger 
that the shear force under a multiple support excitation. This is explained by the multiple 



excitation response spectrum (refer to 1.9). 

 
(a) secmVs 300=α  

 
(b) secmVs 600=α  

 
(c) ∞=αsV  

Fig. 5.15 Total and Pseudo-Static Forces Induced in a Bridge with a Pier Height of 10m on 
Medium Soil Site 

 
 
 
 
 
 
 



5.4 Effect of Pounding of Decks 
 
1) Importance of Pounding 

Pounding occurs between two adjacent decks or between a deck and an abutment in a 
bridge under an extreme ground excitation. The importance of pounding effects on the total 
response of a bridge system is becoming widely known. Pounding provides a limited damage 
at the contact faces, however it develops a transfer of large seismic lateral force from one 
deck to the other, which results in a large change of seismic response in an entire bridge 
system. Pounding or transfer of lateral force in wider meaning through unseating prevention 
devices also affects the total response of a bridge system. A good example for such an effect 
is the collapse of an approach span of the Nishinomiya Bridge, Hanshin Expressway in the 
1995 Kobe, Japan, earthquake. The main bridge (Nishinomiya Bridge) consisted of a Lohse 
bridge with a mass of 12,000 t, while the approach span consisted of a plate girder with a 
mass of 1,900 t. They were tied together by plate-type restrainers. The damage was initiated 
from a failure of two fixed steel bearings of main bridge. Since it allowed large response 
displacement of the main girder to take place, the main girder pulled the approach span, which 
resulted in failure of fixed steel bearings in the approaching span. As a consequence, the 
approaching span dislodged from its support when the deck moved in the other direction. The 
unseating prevention devices were not strong enough to support the approach span once it 
dislodged from the support. Since there was no evidence that the main bridge and the 
approach span collided, the transfer of seismic lateral force from the main bridge to the 
approach span was the main reason for collapse. Based on the damage in the recent 
earthquakes in USA, Japan, Taiwan and Turkey, extensive analyses and experiments are 
being conducted worldwide on the effect of pounding and unseating prevention devices. Some 
unique findings are presented below. 

 
2) Idealization of Longitudinal Collisions of Two Elastic Bars using Impact Spring 
Longitudinal collisions of two elastic rods as shown in Fig. 5.16 are defined as taking place at 
a contact point when the relative displacement between the two ends defined as 

LR uuu −=∆                                (5.11) 

becomes zero with a no-zero velocity, in which Ru  and Lu  represent the displacements of 
the contact surface of the right and left bars, respectively. A positive value of u∆  represents 
a separation of the contact surfaces while a negative value of u∆  represents an overlap of 
the contact surface. A negative value of u∆  is, of course, not possible in reality as given by 
the exact solution.  
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Fig. 5.16 Idealization of Longitudinal Impact of Bars using Impact Spring 

 
Tseng and Penzien (1973, 1975) proposed an impact spring to idealize pounding effects of 

two bridges. Since the idealization of collisions by Tseng and Penzien was for inelastic 
collisions, it was later modified by Kawashima and Penzien (1976, 1979) so that it represents 
elastic collisions. The impact spring with a large stiffness Ik , which is attached to the end of 
one rod, starts to resist motion when 0≤∆u . A collision is completed when rebound occurs 
and the relative displacement between the two rods becomes equal to zero. The impact spring 
completes to resist the motion when 0>∆u . The stiffness of an impact spring and the force 
resisted by the impact spring are written as 
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The impact spring elements can be included in an analytical model based on the analytical 
procedure in Chapter 2. Since a sudden change of the impact spring stiffness results in an 
unbalance force in the equilibrium of the equations of motion, the iteration of equilibrium by 
Eq. (2.64) may be required. In this idealization, a zero value of u∆  represents the position of 
the bars when initial contact occurs on both sides with the impact spring. Consequently a 
negative value of u∆  is possible which corresponds to the shortening of the impact spring. 
In modeling poundings using the impact springs, the impact spring stiffness Ik , the 
numerical time interval of integration t∆ , and the number of beam elements n  representing 
each bar are factors influencing the required dynamic response following impact. 

Using the idealization of the impact spring, collisions of two bars are analyzed for two 
examples (Kawashima and Penzien 1976, Kawashima and Watanabe 2001). The first example 
is a collision of two uniform elastic bars with the same length which are initially traveling in 
opposite directions with the same initial velocity 0V  ( 01 VV =  and 02 VV −= ) as shown in 
Fig. 5.17. The approximate solution of the post-pounding behavior obtained by the above 



procedure can be compared to the exact solution obtained by the classical wave propagation 
theory (Goldsmith 1960).  

(a) Approach

(b) Collision

(c) Separation

V0=0.1 V0=0.1

V0=0.1V0=0.1

(a) Approach

(b) Collision

(c) Separation

V0=0.1 V0=0.1

V0=0.1V0=0.1

 
Fig. 5.17 Longitudinal Collision of Two Bars with the Same Length 

 
Assume both bars have the same properties as E  (modulus of elasticity)=100, 

A (cross-sectional area)=1, ρ (mass density)=0.1, L (bar length)=10, and 0V (initial bar 
velocity)=+/-0.1, in which any convenient units may be used. For this example problem, the 
impact contact duration IT  is 0.2 units of time as given by the exact solution. This duration 
corresponds to the time required for a wave to propagate twice the length of the bar, i.e., 

0

2
C

LTI =                                 (5.14) 

where 0C  is the longitudinal wave velocity given by 

ρ
EC =0                                 (5.15) 

Stress 0σ  induced at the contact surface by wave propagating inside bars is  

0

0
0 C

V−
=σ                                (5.16) 

where a negative value of 0σ  represents a compression stress. 
In both the exact and approximate solutions, it is convenient to monitor the separation 

between the two bars u∆ , and the velocity and the impact force at the contact surface of one 
of the bars (left bar) Lu&  and ILP , respectively.  

Response u∆ , Lu& , and ILP  as predicted by exact wave propagation theory are shown 
in Fig. 5.18. Before collision, the relative separation velocity Lu&  equals +0.1 which 
instantaneously changes to zero upon collision. This velocity stays at a value of zero during 
the contact duration equal to 0.2 unit time and then instantaneously changes to a value of -0.1. 
It is noted that the instantaneous change in velocity represents a Dirac delta change in the 
acceleration, i.e., a pure acceleration pulse of duration and amplitude which tend to zero and 
infinity, respectively.  
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Fig. 5.18 Exact Solution of Relative Displacement between Two Bars u∆ , and Velocity and 
Impact Force at the Contact Surfaces of the Left Bar Lu&  and ILP  

 
Turning now to the approximate solution, consider first the effect of the magnitude of the 

impact spring stiffness Ik~  upon response. Using a time interval of numerical integration t∆  
equal to 2000/10  IT , a value of 10 for n , and six different values for k , responses u∆ , 

Lu& , and ILP  are obtained as shown in Figs. 5.19, 5.20 and 5.21, in which ILP  is 
normalized by the exact impact force 0σA . A dimensionless parameter γ  is introduced to 
represent the magnitude of Ik~  as (Kawashima and Penzien 1976) 
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which represents the ratio of the impact spring stiffness k  to an individual bar element 
stiffness.  
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Fig. 5.19 Computed Relative Displacement between Two Bars u∆  
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Fig. 5.20 Velocity at the Contact Surface of the Left Bar Lu&  
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Fig. 5.21 Impact Force at the Contact Surface of the Left Bar ILP  

 
Comparing the computed relative displacements with the corresponding exact solutions 

shows that the exact and approximate solutions of u∆  are in good agreement for γ  
between 0.5 and 10, but they are significantly in error for the larger and smaller values of γ . 
Comparing the computed velocity Lu&  and the impact force ILP  to the exact solutions 
shows considerable differences for all 6 values of γ  and it shows considerable vibrations of 

Lu&  and ILP  taking place following unit time zero. These vibrations in velocity Lu&  and 
impact force ILP  increase in amplitude with increasing values of λ . It is interesting to note 
that when larger values of γ  are used, contact and separation of the bar ends are repeated 
many times during period IT . It appears that a value of unity for γ  yields the best overall 
correlation of the approximate results with exact solutions. This suggests that the numerical 
value of k  should be approximately equal to the stiffness of its neighboring beam elements.  

Let us now consider the effect of the magnitude of t∆  upon response. Using Ik~  
corresponding to γ =1, n  equal to 10, and t∆  equal to 2000/10  IT , 0.1 IT , IT , and 
5 IT , computed responses of u∆ , velocity Lu& , and the impact force ILP  are shown in Fig. 
5.22. The computed relative displacement responses u∆  agree well with the exact solutions 
for ITt /∆  less than 0.1. It is noted that the computed response of u∆  does not, of course, 
represent the exact solution during IT , for ITt /∆  equal to 1 and 5, but overall responses 
with contact and separation can be well represented. The velocity Lu&  shows an erroneous 
oscillation. The oscillation becomes considerable as ITt /∆  becomes small. However, if a 
smooth curve is drawn through these oscillations, it would be reasonably well with the exact 
relation shown in Fig. 5.18 (b).  

Fig. 5.23 shows the effect of the number of beam element n (n=5, 10, and 29) on the 
relative displacement response u∆  assuming Ik~  corresponding γ =1, and 

ITt /∆ = 10 /2000. The computed displacement response for all three values of n agrees very 
closely with the exact response. 
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(3) ITt∆ =1 
Fig. 5.22 Effect of Numerical Time Interval of Integration (1) 
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Fig. 5.23 Effect of the Number of Element on Relative Displacement u∆  

 
The variations of particle velocity and longitudinal stress with position along both bars for 

the case of n=10, Ik~  corresponding to γ =1, and t∆ = 10 /2000 IT  were computed. The 
resulting variations along both bars for instantaneous times t equal to 0, 0.25 IT , 0.5 IT , 
0.75 IT , 1.0 IT , and 1.25 IT , which correspond to 0, 0.05, 0.1, 0.15, 0.2, and 0.25 unit times, 
respectively, are shown in Fig. 5.24. The ordinates representing particle velocity and stress are 
normalized by dividing by the initial bar velocity 0V  (=0.1) and the exact intensity of the 
stress wave 000 / CEV=σ , respectively. Comparing these computed variations with the 
exact solutions shows that reasonably accurate results can be obtained by the approximate 
method employing an impact spring.  
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Fig. 5.24 Variation of Stress and Particle Velocity 
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Fig. 5.25 Collision of Two Elastic Bars with Different Lengths 

 
The second example is a collision of two elastic bars which are initially traveling in the 

same direction with initial velocities of 01 2VV =  and 02 VV =  (refer to Fig. 5.25). The 
right bar is twice as long of the left bar, i.e., LL =1 =10 and 2L = L2 =20. The same 
non-dimensionalized properties with the first example are assumed in the second example. 
The duration of collision IT  in this case is the time required for a wave to propagate twice 
the length of the right bar as 

0

4
C

LTI =                                  (5.18) 

which is 0.4 unit time. The exact solution for the relative displacement u∆  between the left 
and right bars, particle velocity at the contact surface in the left and right bars Lu&  and Ru& , 
respectively, and stresses at the contact surface in the left rod and right rod, Lσ  and Rσ , 
respectively, are shown in Fig. 5.26, in which approximate analytical results using an impact 



spring are shown for comparison. Before collision, the particle velocity at the contact surface 
of the left bar Lu&  equals to +2 0V  and the particle velocity at the contact surface of the left 
bar Ru&  equals + 0V . Both Lu&  and Ru&  instantaneously change to the same value of 
+1.5 0V  upon collision. This velocity Lu&  stays at a value of +1.5 0V  during 0.4 unit time 
and the velocity keeps this value even after the contact, while in the right bar this velocity 

Ru&  stays at a value of +1.5 0V  during 0.2 unit time and then Ru&  instantaneously changes to 
a value of + 0V . Subsequently, in the right bar the velocity Ru&  repeats to change between 
+2 0V  and + 0V  every 0.2 unit time after a separation occurs, which implies that an 
oscillation remains after collision.  
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(2) Velocity at the Contact Surface 
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(3) Stress at the Contact Surface 
Fig. 5.26 Relative Displacement, and Velocities and Stresses at the Contact surface of the   

Bars 1 and 2 
 

Fig. 27 shows the variation of particle velocity and longitudinal stress with position along 
both bars, in which an approximate analytical result using an impact spring are also shown for 
comparison. It is noted that at t∆  equal to IT  (0.2 unit time) the particle velocity in the 
entire position of the left and right bars becomes 0V  and 1.5 0V , respectively. However, 
because stress in the right bar is still - 0σ  (compression), the right bar stays in contact with 



the left bar without separation. Separation finally occurs at t∆  equal to IT2  (0.4 unit time) 
when the particle velocity becomes 0V  and 1.5 0V  in the entire position of the left bar and 
right bar, respectively, and the stress in the right bar becomes + 0σ  (tension).  

An approximate solution assuming Ik~  corresponding to γ =1, n  equal to 10 and 20 in 
the left and right bars, respectively, and t∆  equal to 10 /2000 IT  are presented in Figs. 
5.26 and 5.27. Reasonably accurate solution for the overall response during and after a 
collision can be obtained using an impact spring.  
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Fig. 5.27 Variation of Stress and Particle Velocity 
 
 
3) Analysis of Seismic Response of a Straight Model Bridge with Pounding Effect 
In order to verify the accuracy of predicting seismic response of bridges with pounding effects, 
a shake table test was conducted for a bridge consisting of two single span decks and columns 
as shown in Fig. 5.28 (Kawashima, Uehara, Shoji and Hoshi 2002). The decks and columns 
are made of steel. The columns are fixed to both the deck and the shake table. The 
fundamental natural period of the left and right decks (decks 1 and 2, respectively) is 0.357 
and 0.422 seconds, respectively. Since energy dissipation is limited in a model bridge 
consisting of the steel deck and columns, two viscous dampers are set at two columns. As a 
consequence, the damping ratio of the decks 1 and 2 for the fundamental mode becomes 
0.0478 and 0.0539, respectively.  
 



 
Fig. 5.28 Model Bridge for Shake Table Test 

 
Two decks are tied together by a pair of restrainers at both sides as shown in Fig. 5.29. A 

shock absorber for tension is set in a restrainer. The restrainers start to resist opening between 
the two decks when the opening reaches an initial gap 2Gu∆ . A pair of shock absorbers for 
compression is installed at the contact surface of the right deck. The shock absorbers start to 
resist closing between the two decks when the closing reaches an initial gap .1Gu∆  Two 
cases are analyzed here among a series of shake table tests.  

 
Fig. 5.29 Model of Restrainers and Shock Absorbers 

 
The first case is a shake table test for the model bridge without restrainers and shock 

absorbers. Consequently, collisions and separations of two decks take place without any 
restraints. The model is excited by the JMA Kobe record during the 1995 Kobe earthquake 
(refer to Fig. 1.1 (a)) with the intensity of acceleration being scaled-down. The initial gap 
between the two decks 1Gu  was 2.5 mm. Responses of accelerations and velocities of the 
two decks, and the relative displacement between the two decks u∆  (refer to Eq. (5.11)) are 
presented in Fig. 5.30, in which “x” denotes the instance when collisions take place. 
Collisions take place nine times when the relative displacement u∆  reaches 1Gu  
(=-2.5mm) resulting in response accelerations with high spikes. The peak response 
acceleration is -2.82g and 2.76g in the decks 1 and 2, respectively.  
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(c) Response Displacement of Deck 1 (d) Response Displacement of Deck 2 
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(e) Relative Displacement between Decks 1 and 2 

Fig. 5.30 Response of Model Bridge without Restrainers and Shock Absorbers 

It is noted here that collisions take place nine times when the response displacements of 
the decks 1 and 2 are negative, which shows that the collisions do not take place when the two 
decks collides resulting from the positive (right) movement of the deck 1 and the negative 
(left) movement of the deck 2. Because the response displacement of the deck 2 is slightly 
larger than the response displacement of the deck 2 (the peak response displacement of the 
decks 1 and 2 is 11.95 mm and 14.83 mm, respectively), the all nine poundings occur when 
the deck 2 collides with the deck 1 which is at the position of nearly reaching its peak 
response displacements in the negative (left) side. The larger response displacement of the 
deck 2 than the deck 1 is resulted from the longer natural period of the deck 2.  

The other case is a shake table test for the model with restrainers and shock absorbers. The 
gaps for closing 1Gu  and the gap for opening 2Gu  are 1.0 mm and 4.0 mm, respectively. 
Responses of acceleration and displacement of the decks 1 and 2, the relative displacement 

t∆ , and impact force IP  are shown in Fig. 5.31, in which “x” and “o” denote the instances 
when collisions take place and the instances when the restrainers resist further openings, 
respectively. Response accelerations are mitigated by the shock absorbers, and the peak 
response acceleration is -0.62g and 0.48g in the decks 1 and 2, respectively. Collisions take 
place 16 times when the relative displacement u∆  reaches 1Gu (=1mm). As is the above 
case, the 16 collisions take place when the deck 2 collides with the deck 1 which is at the 
position of nearly reaching its peak response displacements in the negative (left) side. The 
restrainers are effective to prevent excessive relative opening. The peak opening is 4.72 mm 
which is 0.72 mm longer than the initial gap 2Gu  of 4mm, which shows that the shock 
absorbers deformed 0.72mm resulting in tension with a magnitude of 29.5 N in the two 
restrainers.  
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 (e) Relative Displacement between Decks 1 and 2 (f) Restrainers Force 

Fig. 5.31 Response of Model Bridge with Restrainers and Shock Absorbers 
 
The above shake table test results are analyzed using an analytical model incorporating an 

impact spring as shown in Fig. 5.32. When the restrainers and the shock absorbers are not 
installed, the stiffness and restoring force of the impact spring are given by Eqs. (5.12) and 
(5.13) as 
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On the other hand, when the restrainers and the shock absorbers are installed, the stiffness 

and the restring force of the impact spring are given as 
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where 1
~

Gk : stiffness of shock absorber for compression, and 2
~
Gk : stiffness of restrainers 

including shock absorbers for tension.  

 
Fig. 5.32 Analytical Model 

 
The impact spring stiffness Ik~  and the time interval of numerical integration t∆  are 

determined from the previous analysis so that the following relations are satisfied. 

0.1==
nEA

LkIγ                              (5.23) 

0.1=
∆

IT
t                                (5.24) 

Since EA =5.56 510× kN, L=1 m, n=11, and 0C =5120 m/s when the restrainers and 
shock absorbers are not provided, Ik~  equals 5.6 610× kN/m and t∆  equals 3.9 410−× s.  

Fig. 5.33 shows the computed responses of the model bridge without the restrainers and 
shock absorbers. The experimental responses presented in Fig. 5.30 are also shown here for 
comparison. The computed responses agree well with the experimental responses except 
spikes of the deck response accelerations. The computed peak values of the accelerations of 
the decks 1 and 2 are 15.37g and 10.88g, respectively, which overestimates nearly four times 
the measured accelerations of the decks 1 and 2. The predicted peak accelerations with spikes 
are considerably inaccurate in the analyses using the impact spring.  
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(e) Relative Displacement between Decks 1 and 2 

Fig. 5.33 Computed and Experimental Responses for Model Bridge without Restrainers and 
Shock Absorbers 

Fig. 5.34 shows the effect of varying the magnitude of the impact spring stiffness given by 
Eq. (5.23) as 10/Ik  and 10 Ik  with t∆  stays at 3.9x10-4 s. The responses of the bridge is 
less sensitive to the magnitude of impact spring stiffness if it changes between 10/Ik  and 
10 Ik . The effect of varying the time interval of numerical integration t∆  given by Eq. 
(5.24) is also studied for 10/t∆ , 2 t∆ , and 10 t∆ . Only minor changes from the responses 
presented in Fig. 5.33 occur for 10/t∆  and 2 t∆ . However unrealistic responses are obtained 
for 10 t∆  as shown in Fig. 5.35. It is noted that t∆  is important in the evaluation of 
responses of bridges where direct collisions of two adjacent decks take place.  
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Fig. 5.34 Effect of Magnitude of Impact Spring Stiffness 
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 (a) Response Acceleration of Deck 1 (b) Response Displacement of Deck 1 
Fig. 5.35 Responses of Deck 1 when Time Interval of Numerical Integration equal to 10 

times t∆  

Fig. 5.36 shows computed responses of the model bridge with the restrainers and shock 
absorbers. Fig. 5.37 shows a detailed comparison of the responses shown in Fig. 5.36 for the 
period of 0.5 s and 2.5 s. Overall responses of the model bridge are well predicted by the 
analysis including the force induced in the restrainers. 
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 (e) Relative Displacement between Decks 1 and 2 (f) Restrainers Force 

Fig. 5.36Response of Model Bridge with Restrainers and Shock Absorbers 
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 (a) Response Acceleration of Deck 1 (b) Response Acceleration of Deck 2 
Fig. 5.37 Detail of Responses in Fig. 5.19 (Between 0.5 and 2.5 s) 

 
 


