
 
 

4. Strength and Ductility of Reinforced Concrete Members 
 
 
4.1 Strength and Ductility 
 
It is important to have enough strength and deformation capacities of structural members to 
assure seismic performance of bridges. This is one of the most important requirements which 
distinguish the modern seismic design practice from the old generation practice. This 
importance was widely accepted after the 1971 San Fernando, USA, earthquake. Extensive 
studies have been conducted for enhancing ductility capacity of reinforced concrete piers and 
columns. Effect of lateral confinement of concrete, hysteretic behavior of reinforce concrete 
columns, and various researches for the enhancement of ductility capacity of bridge piers are 
presented in this chapter.   
 
4.2 Lateral Confinement of Concrete by Ties 
 
1) Lateral Confinement Effect 
Reinforced concrete bridge columns exhibit extensive inelastic behavior under a strong 
seismic disturbance. It is known that the lateral confinement by hoops enhance the ductility 
and energy dissipation capacities of reinforced concrete columns. Various studies have been 
conducted for the lateral confinement effects of reinforced concrete columns. Early studies 
showed that the strength and corresponding longitudinal strain at the strength of concrete 
confined by a hydrostatic fluid pressure can be represented by 
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where ccf ′  and ccε : the maximum concrete stress and the corresponding strain, respectively, 
under the lateral fluid pressure lf , 0cf ′  and 0cε : unconfined concrete strength and 
corresponding strain, respectively, and 1k  and 2k : coefficients that are function of the 
concrete mix and the lateral pressure.  

Richard et al (1928) found that the averaged value of the coefficients 1k  is equal to 4.1 
and 2k 15k=  (after Mander, Priestley and Park 1986).  

To represent the confinement effect, it is necessary to define an equation for the ascending 
branch and the descending branch, the peak strength and corresponding strain ccf  and ccε , 
respectively, and the stress and strain at the ultimate cuf  and cuε , respectively. Kent and 
Park (1971) developed a stress-strain model consisting of a second-order parabola ascending 
branch and a straight descending branch. The effect of lateral confinement is accounted for by 
varying the slope of the descending branch. in this mode. After the 1971 San Fernando 
earthquake, the importance of enhancing the ductility capacity became well known. The 
model developed by Kent and Park triggered the research on the confinement effect. Park et al 
(1982) revised this model so that the enhancement of concrete strength was included in this 
model. The confinement effect was represented to be proportional to the volumetric ratio and 
yield strength of hoops. 



Mander, Priestley and Park (1988) developed an empirical equation to represent the 
confinement effect for both circular and rectangular sections as 
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where ccf ′ : compressive strength of concrete, cε : longitudinal compressive concrete strain, 

0cf ′  and 0cε : the unconfined concrete strength and corresponding strain, respectively, cE : 
tangential modulus of elasticity of the concrete (MPa).  

Mander, Priestley and Park (1988) also developed unloading and reloading paths.  
Hoshikuma, Kawashima, Nagaya and Taylor (1997) developed an empirical model for 

the lateral confinement based on uniaxial loading test for circular and square cylinders with a 
diameter or width of 200 mm and 500 mm and height of 600 mm, and a diameter or width of 
500 mm and a height of 1,500 mm. They assume that the concrete stress in the ascending 
branch is represented as 
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where parameters 1C , 2C , 3C  and n are determined from the following boundary 
conditions. 
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where ccf  and ccε : compressive strength of concrete and corresponding strain, respectively. 
By representing the descending branch by a straight line, one obtains  
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where desE : deterioration rate at the descending branch and cuε : ultimate strain of concrete.  

The compressive stress of concrete and corresponding strain ccf  and ccε  and the 
deteriorating rate of the descending branch desE  are given as 
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where α  and β  are shape coefficients, and are 1.0 and 1.0, respectively, for circular 
sections, and 0.2 and 0.4, respectively, for square sections, and sρ : volumetric hoop 
reinforcement ratio, hA , yhf  and s : sectional area, yield strength and interval of hoops, 
respectively, and d : width of a column.  

Fig. 4.1 shows the confinement effect of concrete between the experimental and empirical 
results for the circular and square cylinders with a diameter or width of 200 mm and 500mm. 
The empirical formulae represent a good agreement with the experimental results. 

Sakai and Kawashima (2000) developed unloading and reloading paths for (1) full 
unloading and full reloading, (2) partial unloading and full reloading, and (3) full unloading 
and partial unloading. Effect of repeating unloading and reloading is also included in the 
model.  

 
a) Hysteresis for repeated full unloading and reloading 
If a full unloading occurs from a skeleton curve at stress 1,ulf  and strain ulε  as shown in 
Fig. 4.2, this unloading path intersects the zero stress axis at a plastic strain 1,plε . If a full 
reloading occurs at this strain, the reloading path reaches a stress 2,ulf  at the unloading 
strain ulε . If a full unloading and a full reloading repeat n times (n=1,2,….), the plastic strain 

npl,ε  increases and the reloaded stress nulf ,  at the unload strain ulε  decreases. By 
defining the normalized stress f~ , the normalized strain ε~ , the stress deterioration rate nβ , 
and the increasing rate of plastic strain nγ  as 
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full unloading and full reloading paths are represented as 
 

Unloading 

             

(a) 600 mm tall circular cylinders (φ 200mm)  (b) 1,500 mm tall circular cylinders(φ 500 mm) 

 
(a) 600 mm tall square cylinders (width=200mm)  (b) 1,500 mm tall circular cylinders (width=500 mm) 

Fig.4.1 Comparison of Confinement Effect between Empirical and Experimental  
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Fig.4.2 Plastic Strain npl,ε  and Reload Stress nulf ,  when Unloading occurs at ulε  
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n larger than or equal to 3 









<≤−+
<<−+−

≤≤
=

03.00035.0               )3(005.0965.0
0035.0001.0          )001.0)(82(1

001.00                                               1

ul

ulul

ul

n
n

n
ε
εε

ε
β           (4.30) 

    

Stress (MPa)

Strain Strain

Stress (MPa)Empirical 

Experimental

Stress (MPa)

Strain Strain

Stress (MPa)Empirical 

Experimental

 
(a) 0cf =23.0MPa, %67.0=sρ     (b) 0cf =23.0MPa, sρ =1.33% 

Fig.4.3 Full Unloading and Full Reloading Hystereses Repeated Once 
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Fig. 4.3 shows an applicability of Eqs. (4.22)-(4.31) for a full unloading and a full 

reloading at 5 points on a skeleton curve of the concrete cylinders with the volumetric hoop 
reinforcement ratio sρ  of 0.67% and 1.33 %. Fig. 4.4 shows a comparison of hysterese 
when unloading and reloading are repeated ten times with the unloading strain ulε  of 0.005 
for a concrete cylinder with sρ  of 1.14%. Experimental and empirical paths are compared 
for 5th and 10th unloading and reloading. From those comparison, it is apparent that Eqs. 
(4.22)-(4.31) provide a good estimate to the experimental results. 

b) Hystereses for partial unloading and full reloading 
When a partial unloading occurs at an unloading strain ulε , a partial unloading path must be 
the same with the full unloading path as shown in Fig. 4.5. As a result, Eq. (4.25) can still be 
used for the partial unloading path. To represent the degree of a partial unloading, a parameter 
is introduced as 
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Fig.4.4 Full Unloading and Full Reloading Repeated 10 Times with ulε =0.005 

(a) Unloading and Reloading 
Repeated Ten times 

(b) 5th Unloading and 
Reloading 

(c) 10th Unloading and 
Reloading 
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Fig.4.5 Partial Unloading and Full Reloading 



When an reloading occurs at a reloading stress rlf  and a corresponding reloading strain 
rlε , a full reloading path from this point is represented as 
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The stress 1, +nulf  can be determined by Eqs. (4.29) and (4.30).  

 
c) Hystereses for full unloading and partial reloading 
After a full unloading from ulε  to 1,plε , when a partial reloading occurs to reach a strain 

inul,ε , the hysteresis becomes as shown in Fig. 4.6. By fully unloading from inul,ε , the strain 
progresses to 2,plε . A partial reloading again from 2,plε  to inul,ε  results in a reduction of 

corresponding stress to 2,ulf . Defining the normalized stress inf
~ , normalized strain inε

~ , 
the stress deterioration rate nin,β  and the plastic strain increasing rate nin,γ  as 
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a full unloading and reloading paths are expressed by  
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Fig.4.6 Full Unloading and Partial Reloading 
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Fig. 4.7 shows a comparison of a hysteresis of a full reloading after a partial unloading 

for a cylinder with sρ =1.14%. The unloading occurs at ulε =0.006 until ULβ =0.5. The 

hystereses for the 1st and the 5th cycles are presented here. Eqs. (4.25) and (4.33) are used to 
evaluate the empirical hystereses. The empirical results show a good agreement with the test 
results.  

Fig. 4.8 shows a comparison of hystereses of a partial reloading after a full unloading at 
ulε  equal to 0.005 for a cylinder with sρ =1.14%. The reloading occurs until RLγ  equal to 

0.7. After fully unloaded at ulε , the reloading and the unloading were repeated two times in 
this example. The empirical hystereses by Eqs. (4.39) and (4.40) agree well with the 
experimental results.  

                   

Strain StrainStrain

St
re

ss
 (M

Pa
)

St
re

ss
 (M

Pa
)

St
re

ss
 (M

Pa
)

Emp irical
Experimental

Strain StrainStrain

St
re

ss
 (M

Pa
)

St
re

ss
 (M

Pa
)

St
re

ss
 (M

Pa
)

Emp irical
Experimental

 
(a) Total Hystereses           (b) 1st Cycle            (c) 5th Cycle 

Fig.4.7 Full Unloading and Partial Reloading Repeated Ten Times  



 
2) Lateral Confinement of Concrete by Carbon Fiber Sheets 
Carbon fiber sheets are well used for seismic retrofit of existing bridge piers. Lateral 
confinement effect of concrete by carbon fiber sheets is quite different from the confinement 
of concrete by hoops. A carbon fiber sheet consists of a number of carbon fiber strings 
included in a textile. At this moment, carbon fiber sheets having 200 g/m2 and 300 g/m2 are 
available. Their nominal elastic modulus is 230 MPa or 390 MPa and a nominal rupture strain 
is 1.5%. A carbon fiber sheet is elastic until rupture occurs. Consequently, a carbon fiber sheet 
has a similar elastic modulus with hoop bars, but has nearly five times larger elastic 
deformation capacity. In a reinforced concrete column confined by hoops, the confinement 
force is saturated at the yield of the hoops. On the other hand, in a reinforced concrete column 
confined by carbon fiber sheets, the confinement force builds up until rupture of the carbon 
fiber sheet.  

Hosotani and Kawashima (1998) develop a constitutive model of concrete confined by 
carbon fiber sheets, and later they extended this model to include the confinement by both 
existing hoops and carbon fiber sheets (Hosotani and Kawashima 1999, Kawashima, Hosotani, 
Yoneda 2000).  
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(a) Axial Stress vs. Axial Strain    (b) Axial Stress vs. Spherical Strain 

Fig.4.9 Stress vs. Strain Relation of Concrete Confined by Carbon Fiber Sheets 



Fig. 4.9 shows an example of axial stress cf  vs. axial concrete strain cε  relation, and 
axial stress cf  vs. spherical concrete strain relation. To represent an amount of carbon fiber 
sheets, similar to the volumetric tie reinforcement ratio sρ  by Eq. (4.20), a carbon fiber 
sheet ratio (volumetric ratio) CFρ  is defined as 
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where CFt : thickness of a CFS (mm), n : number of CFS wrapped, and d: diameter of a 
concrete cylinder (mm). In Fig. 4.9, confined concrete has a peak strength at spherical strains 
between 1,100 and 2,500 µ  if the carbon fiber ratio CFρ  is smaller than 0.167%. One 
denotes this spherical strain as CFcε , the stress of CFS corresponding to this CFcε  is 
between 250 and 550 MPa, which is only 10% of the CFS strength. On the other hand, 
concrete stress cf  continues to increase in the confined concrete with a larger CFρ  
although the stiffness gradually deteriorates from a pre-deterioration value to a 
post-deterioration value. Defining the spherical strain where the stiffness has shifted to the 
post-deterioration stiffness as CFtε , CFtε  is in the range from 1,800 to 1,900 µ . It is 
known that when the spherical strain of unconfined concrete reaches 1,100-2,500 µ , the 
concrete starts to suffer damage resulting in the deterioration of stiffness. This spherical strain 
is in the similar range with CFcε  and CFtε . This may be because the deterioration of 
concrete stress at CFcε  or CFtε  result from the deterioration of concrete.  
 

a) Lateral Confinement of Concrete by CFS 
Depending on the amount of CFS, the stress vs. strain relation takes a form either (a) or (b) in 
Fig. 4.10. If one denotes the post-deterioration stiffness as gE , based on experimental test 
results for circular and square cylinder confined by CFS gE  is evaluated as 
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(a) 0<gE                             (b) 0≥gE  

Fig.4.10 Stress vs. Strain Relation of Concrete Confined by Carbon Fiber Sheets 
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where CFE : elastic modulus of CFS. It is noted that desE  is positively defined at the 
descending branch in Eq. (4.18), while it is defined as shown in Fig. 4.10. 

When gE <0, the stress vs. strain relation defined by Eq. (4.14) is used with slight 
modifications as 

 










≤≤−+

≤≤




















−

=

−

cucttcgt

tc

n

t

c
cc

c

Ef

n
E

f

εεεεε

εε
ε
ε

ε

                     )(

0              11
1

            (4.48) 

where 

ttc

tc
fE

E
n

−
=

ε
ε

                           (4.49) 

 
where tf  and tε  represent the concrete stress where the stiffness has shifted to the 
post-deterioration stiffness and the corresponding strain. When gE <0, tf  is equal to ccf .  

When 0≥gE , the stress vs. strain relation is expressed as 
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Eq. (4.50) was derived by using Eq. (4.9). Among four boundary conditions by Eqs. 

(4.10)-(4.13), Eqs. (4.12) and (4.13) were replaced as 
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Three parameters are now required to determine the constitutive relation of concrete 

confined by CFS, i.e., stress tf  and corresponding strain tε  where the stiffness has shifted 
to the post-deterioration stiffness, and the ultimate strain cuε . They are given as 
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Square sections 

00
53.10.1

c

CFCFCF

c

t
f
E

f
f ερ

+=                     (4.57) 

0
00995.000330.0

c

CFCFCF
t f

Eερ
ε +=                 (4.58) 

2
1

4
3

0
0802.000340.0 
















+=

CF

CF

c

CFCF
cu E

f
f
fρ

ε              (4.59) 

 
where CFf  represent strength of CFS. 

Fig. 4.11 shows comparisons of experimental and empirical relations for concrete 
cylinders with circular and square sections. They are confined by CFS with CFS strength of 
230 MPa or 392 MPa. Empirical stress vs. strain relations agree well with the experimental 
results.  
 
b) Lateral Confinement of Concrete by both CFS and Ties 

Even if the existing ties in a reinforced concrete column are insufficient to confine the core 
concrete, they must contribute to the confinement as well as CFS if they do not suffer damage 
during an excitation. Consequently it is interesting to evaluate an interaction of existing ties 
and CFS. The above empirical formulae are extended to include the effect of existing ties.  

The lateral confinement of concrete by Eqs. (4.14)-(4.19) are rewritten using the notations 
in this section ( tcc εε → , tcc ff → , desE gE−→ ) as 
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It is noted here that Eqs. (4.62) and (4.63) are slightly re-evaluated assuming that 0cε  is 

equal to 0.003. 
Comparing Eq. (4.54) and Eq. (4.62), one notices a considering similarity. For example, 

the term of 93.1 CFCFCF Eερ  (circular sections) in the right hand side of Eq. (4.54) 
represents an increasing rate of axial stress cf  at tc εε =  by wrapping CFS around the 
concrete cylinder. Since CFCFCF Eερ  represents the confining stress by CFS at the strain 
tε , Eq. (4.54) represents that by providing lateral confinement the concrete stress cf  

increases 1.93 times the confining stress by CFS at tε . In the same way, the term of 
2.2 yhs fρ  in the right hand side of Eq. (4.62) (circular sections) represents an increasing rate 
of the concrete stress cf  at tc εε =  by providing confinement by ties.  

Consequently, the increasing rate of concrete stress tf  by CFS and that by ties may be 
added if a concrete cylinder is confined by both CFS and ties. If this assumption is valid, the 
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Fig.4.11 Stress vs. Strain Relation of Concrete cylinder Confined by CFS 



stress tf  of a concrete cylinder which is confined by both CFS and ties may be written from 
Eqs. (4.54), (4.57), and (4.62) as 
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In a similar way, the strain tε  corresponding to tf  may be written as 
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On the other hand, in Eqs. (4.46) and (4.47) the denominator in the first term of the right 

hand side ( )CFCFCF Eερ  represents the confining stress of CFS at the strain CFtε . 
Similarly, yhs fρ  in the denominator in Eq. (4.64) represents the confining stress by ties at 
the strain CFtε . It is noted that concrete start to remarkably deteriorate when the concrete 
strain in the spherical direction reaches CFtε  (≈1,500-1,900µ ), and this is close to the yield 
strain of ties yhε  (≈1,800µ ). As a consequence, denoting sE  the elastic modulus of ties, 

yhs fρ  in Eq. (4.64) may be written as 
 

sCFtssyhsyhs EEf ερερρ ≈=                   (4.67) 
 
Based on this assumption, the confining stress by CFS represented by Eqs. (4.46) and 

(4.47) and the confining stress by ties represented by Eq. (4.63) may be added to obtain the 
confining stress of concrete confined by both CFS and ties.  

On the other hand, the second term of Eq. (4.63) represents a rate of continuous increase of 
concrete stress at strains over CFtε . Since the confining stress of ties does not any more 
increase after their yield, this confining stress by ties is not needed to add to the second term 
of q. (4.63). Consequently, gE  of a concrete cylinder confined by both CFS and ties may be 
written from Eqs. (4.46), (4.47) and (4.63) as 
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(4.68) 
 
Since a concrete cylinder confined by both CFS and ties reaches its ultimate when CFS 

ruptures, Eqs. (4.56) and (4.59) still provide the ultimate strain.  
To verify the empirical constitutive model by Eqs. (4.65), (4.66), (4.68), (4.56), and (4.59), 

loading tests were conducted for concrete cylinders with various confinement by CFS and ties. 



Fig. 4.12 shows the validation of empirical evaluation of tf , tε , gE  and cuε . The 
empirical parameters well agree with the experimental results. Using those parameters stress 
vs. strain relations of concrete confined by various amount of CFS and ties are evaluated to 
compare with the experimental results. Fig. 4.13 shows an example of the comparison. The 
empirical stress vs. strain relations agree well with the experimental results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) tf                                  (b) tε  

(c) gE                         (d) cuε  

Fig.4.12 Comparison of Empirical Parameters and Experimental Results 
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Fig.4.13 Empirical and Experimental Stress vs. Strain Relations of Concrete  

Confined by CFS and Ties 


