
 
 

2. DYNAMIC RESPONSE ANALYSIS OF BRIDGES 
 
 
2.1 INTRODUCTION 
 
Bridges are unique in their structural response. First, they are longitudinally lengthy, and 
consist of many structural components which contribute to the overall resistance capability of 
the system. Decks are often skewed and curved, and intermediate expansion joints divide a 
bridge system into several structural segments with different natural periods. Second, there are 
various structural types with complex geometries and dynamic response characteristics. 
Suspension bridges and cable stayed bridges generally display a very complex structural 
response with long natural periods, often exceeding 10 seconds. Many modes with closely 
spaced natural periods contribute to the complexity of the structural response. Third, bridges 
are generally constructed at soft soil sites such as rivers and bay areas. Because ground 
motions are amplified at these sites, greater attention should be paid to seismic design for 
large ground motion. Failure of foundations associated with the instability of surrounding 
ground is a common occurrence. Fourth, the degree of statical indeterminacy is smaller in 
bridges than in buildings, and therefore ductility of piers/ columns needs to be carefully 
examined to prevent failure during strong earthquakes.  

Various analytical methods have been developed to predict the seismic response of bridges. 
This has enabled to construct bridges which were difficult to design when computer analysis 
was not available. For example, precise linear and nonlinear seismic response analysis is 
essential for long span bridges, bridges with complex geometric features, cable supported 
bridges, and tall bridges. Computers have also greatly assisted in the analysis of bridges which 
have failed during past earthquakes, and have greatly contributed to the improvement of 
seismic design methods.  
 
2.2 ANALYTICAL MODELING OF BRIDGES 
 
1) Structural System 
Generally a bridge consists of a girder, piers/ columns, abutments, foundations, bearing 
supports, and expansion joints. In addition, special types of bridges such as arch bridges, 
suspensions bridges and cable stayed bridges have arch members, towers, anchorages, cables, 
hangers and links. Energy dissipating devices and active mass devices are used in passive and 
active control. Because the structural characteristics of bridges depend on their types, 
emphasis is placed here on showing analytical modeling for a girder bridge (Tseng and 
Penzien [34]). 

The structural system of this type of bridge consists of a multiple-span continuous deck 
supported by bearings on or rigidly connected to reinforced concrete piers/ columns and 
abutments. The deck may be straight, curved or skewed, and is supported at discrete locations 
along its longitudinal axis. Intermediate expansion joints divide the deck into several 
segments. The entire structural system generally exhibits the characteristics of a continuous 
space frame. Its dynamic response to earthquake excitations is of a lower mode type; hence, a 
mathematical model of discrete form can be used to approximate the continuous system. This 
form of modeling leads to a system with a finite number of degrees of freedom. Following the 
standard finite element procedure, these degrees of freedom are chosen as the nodal 
displacements of the discrete finite element model. For a three dimensional model, each nodal 



point usually has 6 degrees of freedom, i.e., 3 translation components and 3 rotation 
components. Internal constraints may reduce this number at some nodal points. 

For dynamic response analysis, the stiffness, mass and damping properties of each finite 
element must be realistically defined. 
 
2) Stiffness Idealization 
The finite element idealization of a complete bridge system results in a stiffness matrix which 
is an assemblage of the generalized stiffness matrices for individual elements as 
 

∑=
=

N

i
i

1
kK                             (2.1) 

 
where, K = total stiffness matrix for the entire bridge system, ki = stiffness matrix for 
element i, and N= total number of elements in the bridge system.  

For small amplitude response, the bridge system may be modeled by a set of linear 
elements; however, when subjected to high amplitude response as occurs during severe 
earthquakes, certain critical regions of the system may undergo large cyclic inelastic 
deformations. Therefore, nonlinear finite elements for the mathematical model, which have 
realistic nonlinear hysteretic force - deformation characteristics, must be chosen. The stiffness 
of these elements are time dependent and are functions of element deformations and 
deformation histories. Usually, they are linearized for analysis in a piecewise fashion using 
tangent stiffnesses at discrete times. Thus, the total stiffness matrix for the entire structure 
may be written as 
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where, K t = total stiffness matrix at time t, and kti = stiffness matrix for element  i at time t. 
Nonlinearity arising from large geometry changes is not generally included as it is negligible.  
 
a) Decks 
When determining internal stress distributions in the constituent flanges and webs of box 
girders under localized loadings, elaborate methods of analysis, such as finite element analysis, 
must be used. However, when the external loadings are relatively uniformly distributed, and 
when only resultant forces on transverse cross-section, i.e., 3 components of force and 3 
components of moment, are required, a simple beam analysis as shown in Fig. 2.1 is usually 
sufficient to yield accurate results.  

Since a typical deck is extremely stiff and strong in comparison with its supporting 
columns and abutments, the high amplitude bridge response produced during severe ground 
shaking will be caused primarily by deformations in the columns, abutments and expansion 
joints. The deck will remain elastic and, therefore, can be modeled by linear elastic elements. 
Nonlinear elements must, however, be used for columns, abutments and expansion joints.  



 
 (a) Typical Box Girder Element (b) Idealized Model 

Fig. 2.1 Analytical Model of Superstructures 
 

b) Columns 
The structural behavior of columns is generally adequately modeled using simple beam 
elements. Because of large amplitude response, coupled inelastic deformations may occur in 
these members. For example, Fig. 2.2 shows lateral force vs. lateral displacement hysteresis 
loops which were obtained by cyclic loading tests of circular reinforced concrete columns 
(Priestley, Seible and Chai [29]). Fig. 2.2 (a) shows the hysteretic behavior of an as-built 
column while Fig. 2.2 (b) shows the hysteretic behavior of a column strengthened with a steel 
cylinder jacket. Confinement of concrete by hoops is important to increase the ductility and 
energy dissipating capacity of reinforced concrete columns (Park [27], Priestley and Park 
[30]).  
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 (a) as-built column (b) a column strengthened with a steel 
  cylinder jacket   

Fig. 2.2 hysteretic behavior of columns 
 

Fig. 2.3 shows the lateral force vs. displacement hysteretic loops of steel columns (MacRae 
and Kawashima [18]). Degradation of stiffness after the maximum load is achieved generally 
larger in steel bridge columns than well confined reinforced concrete columns. Because this 
tends to cause large residual displacement when subjected to large ground motion, such a 
feature must be carefully idealized in analysis. In realistically modeling the hysteretic behavior 
of reinforced concrete columns, stiffness degradation, strength loss and pinching are the key 



issues (Williams and Sexsmith [38]). Therefore, nonlinear beam elements which realistically 
characterize the inelastic hysteretic behavior of columns must be used. 

Fig. ? shows a more detailed idealization of reinforced concrete column by 3 dimensional 
finite elements. Concrete is modeled by solid elements while reinforcing bars are modeled by 
beam elements. Inelastic stress-strain hysteresis as well as failure criteria is idealized by an 
appropriate constitutive model. 
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Fig. 2.3 The lateral force vs. displacement hysteretic loops of steel columns 

 
c) Abutments 

The force-displacement relationship of abutments is a highly complex nonlinear problem. 
Failures are likely to be of the shear type causing excessive damage. In idealizing abutments 
by beam elements, it is usual to assume equivalent linear springs in longitudinal and 
transverse directions to simulate the restraints on the superstructure provided by any abutment. 
It is important to select the spring stiffness accurately so as to allow correct distribution of 
seismic loads throughout the structural systems. For this purpose, the spring stiffness must 
reflect the dynamic behavior of the soil behind the abutment, the structural components of the 
abutment, and the interaction between the soil and the structural components of the abutment. 
Substantial nonlinear behavior is expected in the abutment because some of the elements 
constituting the abutment may be subjected to significant yielding (Maroney and Chai [19]).  
 
d) Foundations 
Various idealizations have been developed for foundations. Complex idealization uses 
nonlinear finite element models. A simpler and more appropriate model consists of 3 
translational and 3 rotational soil springs, as shown in Fig. 2.4, to connect the base of each 
column and abutment to a rigid foundation where the seismic excitation is fully prescribed. 
For linear analysis, the stiffness of these soil springs may be evaluated using linear elastic 
half-space theory (Penzien [28]).  

For large amplitude response, the foundation soils may undergo inelastic deformation of 
the hysteretic type. In this case, the six soil springs should be nonlinear hysteretic springs. 



Their stiffness can only be established through extensive experimental studies on the dynamic 
properties of foundation soils (Lam [17]).  

 
Fig2.4 Analytical Model of Foundations 

 
3) Mass Idealization 
The continuous mass of the bridge structural system is modeled in discrete form by lumping 
element masses at their end nodal points. Since inertia forces are associated with each of the 
six degrees of freedom at a nodal point, each lumped mass should be assigned an appropriate 
moment of inertia about its own coordinate axes. It should also be noted that when conducting 
nonlinear dynamic analysis, the instantaneous stiffness matrix can become singular, in which 
case it is required that a mass moment of inertia be assigned to each rotational degree of 
freedom. Following this procedure, a diagonal mass matrix mi  is established for each 
element i  (i =1,2, ⋅ ⋅ ⋅ ⋅ ⋅, N ). The diagonal mass matrix for the complete bridge system can 
then be assembled and expressed as 
 

M = m i
i=1

N
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In determining the overall dynamic response of bridges, this lumped mass method has been 
found to be quite adequate for analytical purposes. 
 
4) Damping Idealization 
Velocity dependent damping in a bridge structural system is represented by a generalized 
damping matrix associated with the finite degree of freedom permitted in the analytical model. 
This matrix can be derived by consistent procedure similar to those used in deriving the 
stiffness matrix, provided the internal damping mechanism within each element is specified. 
The structural damping matrix for the complete bridge system would then be evaluated as 
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i=1
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where c i  is the damping matrix for the i-th element. 

In practice, however, it is difficult to establish the basic characteristics of damping in 
individual elements. It is therefore often assumed that the damping force consists of one set 
which is proportional to the velocities of each mass point and a set which is proportional to 
the rate of deformation. Thus, the structural damping matrix becomes 



 
C = αM +βK                          (2.5) 

 
where α  and β  are the scalar proportionality constants. They are determined after 
assigning damping ratios to the first two natural modes of vibration (Clough and Penzien [7]). 

In the mode superposition method, modal damping ratios kξ  for each mode are required. 
Because energy dissipation occurs by specific mechanism, such as friction, the hysteretic 
behavior of structural components and radiation of energy from structures to soils, it may be 
possible to evaluate damping ratio at each element. Then, the modal damping ratios are 
approximated as (JRA [9]) 
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where kmξ  = damping ratio of m-th element for k-th mode; φkm  = mode vector of m-th 
element for k-th mode; km  = stiffness matrix of m-th element; mm  = mass matrix of m-th 
element, and n = number of element. 

Eq. (2.6) assumes that modal damping ratios are proportional to the strain energy in a 
structural system, and a modal damping ratio is obtained from the weighted sum of the 
damping of each structural segment in a bridge system with the weight being the normalized 
elastic energy stored in each segment for a deformed shape corresponding to k-th mode shape. 
On the other hand, Eq. (2.7) assumes that modal damping ratios are proportional to the 
kinematic energy of a structural system, and a modal damping ratio is obtained from the 
weighted sum of the damping of each structural segment in a bridge system with the weight 
being the normalized kinematic energy of each segment for a deformed shape corresponding 
to k-th mode shape. Eq. (2.6) is appropriate to bridges in which the hysteretic-type energy 
dissipation is predominant. It has been found that Eq. (2.6) provides an accurate estimation for 
the modal damping ratios of seismic isolated bridges based on a model test (Kawashima, 
Hasegawa and Nagashima [13]). 

For a nonlinear dynamic response analysis, the viscous damping properties of a bridge are 
more difficult to evaluate. As with the elastic case, it is often assumed as 

 
tt KMC βα +=                            (2.8) 

 
In this relation, if degradation of the stiffness occurs, the damping matrix decreases. 

However damping generally increases under such a condition resulting from hysteretic energy 
dissipation. From such a point of view, Eq.(2.8) is only an assumption to make the analytical 
treatment easy.  

 



 
2.3 ANALYTICAL PROCEDURE FOR SEISMIC RESPONSE OF BRIDGES 
 
1) Equations of Motion 
 
Equations of motion for a n degree of freedom bridge system expressing dynamic equilibrium 
at time t can be expressed as 
 

)(tttttt RuKuCuM =++ &&&                    (2.9) 
 
where, M , Ct  and K t  are the mass, damping and stiffness matrices, respectively, and 
where R(t)  is the applied dynamic load vectors. Vectors tu&& , tu&  and ut  are the absolute 
acceleration, absolute velocity and absolute displacement, respectively.  

If a bridge is subjected to prescribed support excitations, a complete set of nodal 
displacements ut

c  should be considered which include, in addition to the n free nodal point 
displacements, the nb  prescribed non-zero support displacements. Consequently, the 
complete nodal displacement vector can be expressed as 
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where ut

b  is a vector containing the nb  non-zero support displacements. Vector ut
c  can be 

conveniently decomposed into a quasi-static displacement vector us
c  and a dynamic 

displacement vector uc , i.e., 
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where by definition ub = 0 . Enlarging the masses, damping and stiffness matrices as well as 
the dynamic load vector in Eq. (2.9) to account for the nb  support displacements, the 
equation of motion for the complete bridge system can be expressed as 
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(2.12) 
The equations of motion associated with the n free nodal point displacements now 

become 
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Substituting Eq. (2.11) to Eq. (2.13), one obtains 
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By the definition of the quasi-static vector us ,  
 

K tus + K t
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Consequently, us  can be directly obtained as 
 

us = −Kt
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where Bt ≡ K t

−1Kt
b  is a matrix of quasi-static influence coefficients resulting from the nb  

non-zero support displacements. If the system is linear, all coefficients in Bt  are invariant 
with time.  

Usually the damping term on the right hand side of Eq. (2.14) is small than the inertia 
terms and therefore may be dropped from the equation without introducing a significant error. 
In addition, the coefficients in Mb  can be set equal to zero since mass coupling vanishes for 
a lumped mass model. Therefore, after substituting Eq. (2.16) into Eq. (2.14), the equations of 
motion reduce to the form 
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where b

su&&  is a vector containing the prescribed support excitations.  
 

a) Multiple Support Excitation 
Because a bridge has a substantial longitudinal axis, ground motion at each support will 

not be identical. When ground excitations corresponding to each of the nb  support 

displacements are prescribed by a vector )(tm
gu&& , the vector in Eq. (2.17) can be expressed as 
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and the equations of motion become 
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b) Rigid Support Excitation 

When ground excitation at all supports along the bridge system are identical and are 
prescribed by a rigid acceleration vector r

gu&&  consisting of three translational components 

gXu&& , gYu&&  and gZu&& , measured along their corresponding global axes X, Y and Z, i.e., 
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the equations of motion become 
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In this equation, matrix rB  is defined by the relation 
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where vectors r

Xb , r
Yb  and r

Zb  each have n components. Those components representing 
nodal displacements corresponding to the rigid base translation in the global X, Y and Z 
directions, respectively, equal unity while all other components equal zero.  

 
2) Linear Analysis Procedure 

When a bridge system is linear, the stiffness and damping matrices are invariant with time, 
i.e., K t = K  and Ct = C . Consequently, Eq. (2.21) can be written as 
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A standard procedure can be followed in obtaining dynamic response, namely, solving the 

generalized eigenvalue problem for mode shapes and frequencies, solving a decoupled set of 
normal equations of motion, and using mode superposition to obtain time histories of the 
response. 

 
a) Mode Shapes and Frequencies 

The desired undamped free vibration mode shapes and corresponding frequencies can be 
obtained by solving the equation 
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where ω i  and φ i  are the frequency and shape vector, respectively, for the i-th mode and 
where r is the lowest number of modes required for the accuracy of solution desired. Usually, 
r is much less than n.  

The modal matrix Φ ≡ φ1 φ2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ φq[ ] must satisfy the orthogonality condition 
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where Ω2 is a diagonal matrix containing the squared frequencies ω1

2 , ω2
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convenient to normalize the modal matrix so that it satisfies the condition 
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where I  is the unit matrix. 

Vectors u(t) , )(tu&  and )(tu&&  can be expressed in terms of the modal matrix and the 
normal coordinate vector q(t)  as 
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Substituting Eq. (2.26) into Eq. (2.23), premultiplying the resulting equation by ΦT , and 

making use of Eqs. (2.24) and (2.25), one obtains 
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where Λ  is a diagonal matrix containing the terms iiωξ2  for i=1,2,…,r and where R*(t)  
is a normal local vector defined by 
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b) Response Time History 

The solution of Eq. (2.28) can be carried out in the time domain using the convolution 
integration as 
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where ω Di  is the damped frequency and is given as 2/1)1( iiDi ξωω −= . 

Thus, the response time histories u(t) , )(tu&  and )(tu&&  can now be obtained using Eq. 
(2.27). 

 
c) Spectral Response 
When R(t) = 0  in Eq. (2.29), the maximum response of qi (t) can be obtained as 
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where SDK (Ti ,hi ) (K=X,Y and Z) is the response displacement response spectra for the 
earthquake ground accelerations in X, Y and Z components, and where Ti  is the natural 
period as given by Ti = 2π / ω i . 

The maximum displacement response ui (t) max  can then be determined by 
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Consequently, the maximum displacement can be estimated by the square root of the sum 



of the squares (SRSS) of the individual modal response as 
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The SRSS method is generally applicable to most bridges. However, there are some 

bridges with unusual geometric features which cause some of the individual modes to have 
closely spaced frequencies, and this method may not be applicable for such bridges.  

 
3) Single Mode Spectral Analysis 
 
When the first mode is predominant compared to other higher modes, Eq. (2.33) can be 
approximated as 
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Eq. (2.34) provides good approximation for most bridges with standard geometric 

features. Based on this characteristic, a single mode spectral analysis method (AASHTO, [1]) 
is often used to calculate the seismic design forces for bridges that respond predominantly in 
the first mode of vibration. The method, although completely rigorous from a structural 
dynamics point of view, reduces to a problem in statics after the introduction of inertia forces.  

The equation of motion for a continuous bridge system is conveniently formulated using 
energy principles. The principle of virtual displacement may be used to formulate a 
generalized parameter model of the continuous bridge system in a manner which 
approximates the overall behavior of the system. To obtain an approximation to the mode 
shape, a uniform static loading p0  is applied to the superstructure and the resulting 
deflection vs (x) is obtained. The dynamic deflection v(x, t)  of the superstructure under 
seismic excitation as shown in Fig. 2.5 is then approximated by the shape function multiplied 
by a generalized amplitude function v(t) as  
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The strain energy stored internally by the uniformly applied loading in deforming the 

elastic structure Umax  is 
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where, 
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The maximum kinetic energy of the system is given by 
 



∫ == L
s g

dxxvxw
g

T 0

2
2

2
max 2

)()(
2

γωω
              (2.38) 

 
where, 
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If the uniform loading p0  is removed and the effects of damping are neglected, the 

structure will vibrate in the assumed mode shape at a natural frequency determined by 
equating maximum kinematic energy to maximum strain energy (Rayleigh method); i.e., 
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Substituting Eqs. (2.36) and (2.38) into Eq. 2.40), one obtains 
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The generalized equation of motion for the single degree-of-freedom system subjected to 

a ground acceleration )(tvg&&  can be written 
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and ξ  is the damping ratio.  

Representing the displacement response spectra for )(tvg&&  as ),( hTSD , the maximum 
response of Eq. (2.42) may be written as 

 

γ
βξ ),()( max TStv D=                     (2.44) 

 
Denoting ( ) ),(2/),( 2 ξπξ TSTTS AD ≈  and using the standard acceleration response 

spectral value Cs  in its dimensionless form, 
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The maximum response of the bridge system is obtained as 
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4) Nonlinear Dynamic Response Analysis 
 
When the structural system is nonlinear, the coupled equations of motion, Eq. (2.9), must be 
solved using step-by-step integration method. Considering a time interval ∆t  starting at time 
t  and assuming that the stiffness and damping matrices at time t , i.e., K t  and Ct , can be 
applied over the full time interval, one obtains the equations of motion in the incremental 
form 
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In the Newmark generalized acceleration method (Newmark [26]), the following 

approximations for nodal velocities and displacements are assumed, 
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where parameters δ  and δ  can be chosen to give the required integration stability and 
accuracy. When δ = 1 / 2  and σ = 1 / 6 , the approximations correspond to the linear 
acceleration method, and when δ = 1 / 2  and σ = 1 / 4  they correspond to the constant 
acceleration method. While the linear acceleration method is conditionally stable depending 
on the magnitude of ∆t , the constant acceleration method is unconditionally stable for any 
magnitude of ∆t  (Bathe and Wilson [5]).  

The approximation given by Eq. (2.49) can be expressed in the incremental form 
 

)()()()( 431 tCtCtCt uuuu &&&&& −−∆=∆  
)()()()( 542 tCtCtCt uuuu &&&& −−∆=∆                  (2.51) 

 
where C1 = 4 / ∆t2 , C2 = 2 / ∆t , C3 = 4 / ∆t , C4 = 2  and C5 = 0  for the constant 
acceleration method and where C1 = 6 / ∆t2 , C2 = 3 / ∆t , C3 = 6 / ∆t , C4 = 3  and 
C5 = ∆t / 2 for the linear acceleration method.  

Substituting Eq. (2.51) into Eq. (2.47), one obtains 
 

)(~)(~ ttt RuK ∆=∆                       (2.52) 
where 

ttt CC KCMK ++= 21
~                     (2.53) 

{ } { } )()()()()(~
5443 tCCtCCttt ttg uCMuCMuMBRR &&&&& ++++∆+∆=∆   (2.54) 

 



Eq. (2.52) can be solved for ∆u(t), and Eq. (2.51) can be used to obtain )(tu&∆  and 
)(tu&&∆ . The displacements, velocities and accelerations at time t + ∆t  can be obtained by Eq. 

(2.48). The displacements u(t + ∆t)  can be used to calculate the internal force vectors and 
the new tangent stiffness matrix kt+ ∆t  for each nonlinear element in the bridge system. The 
new total tangent stiffness matrix K t+∆t  is then obtained by the standard assemblage 
procedure. 

 
5) Evaluation of Computed Solution 
 
A measure of how well the dynamic equilibrium at time t + ∆t  is being satisfied by the 
approximate solution of Eq. (2.47) may be expressed by the residual or unbalanced force 

tt ∆+Rδ . The corrections of solution using Eq. (2.47) may then be given by comparing the 
ratio of the Euclidean norm of the residual forces and the external forces ∆ P  with a specific 
tolerance ∆ PS  using the relation 
 

PS
tttttt

tt
P ∆≤

−+
=∆

∆+∆+∆+

∆+
RRR

R
δ

δ
           (2.62) 

where 
S

tttttttttt ∆+∆+∆+∆+∆+ −−−= FuCuMRR &&&δ               (2.63) 
 
and where S

tt ∆+F  is the restoring force at t + ∆t  of the total bridge system. When the 
accuracy of solution is unsatisfactory, it may be improved by using smaller time intervals or 
by applying an equilibrium correction through an iteration process.  

The equations of motion for i-th equilibrium iteration at time t  are expressed as 
 

)()()()()( i
t

i
t

i
t

i
t

i
t RuKuCuM δδδδ =++ &&&                (2.64) 

 
where M  and C  = the constant mass and damping matrices, )(i

tK = tangential stiffness 

matrix at time t  for i-th iteration, )(i
tu&&δ , )(i

tu&δ  and )(i
tuδ  = corrective nodal accelerations, 

nodal velocities and nodal displacements for i-th iteration as defined by 
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i
t uuu &&&&&& −= +δ  
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t

i
t

i
t uuu &&& −= +δ                          (2.65) 
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i
t uuu −= +δ  

 
and )(i

tRδ  representing the residual forces for the i-th iteration is given by 
 

)()()()( iS
t

i
t

i
tt

i
t FuCuMRR −−−= &&&δ                  (2.66) 

 
If convergence occurs, the iteration can be continued until the dynamic equilibrium of the 

motion is satisfied within the specific accuracy. 


