Physics and Engineering of CMOS Devices

Ken Uchida Department of Physical Electronics Tokyo Institute of Technology

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Subband Structures (I)

Subband Structures (II)

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Subband Structures (III)

Wavefunctions

Strain, Stress, Mobiliy

$E_{\rm C}$ Split and $\mu_{\rm e}$ Enhancement -Uniaxial <100> Stress-

In case of <u>uniaxial <100> stress</u>, μ_e enhancement is accurately modeled by taking into account the split of E by the stress.

Devices Ken Lichida Tokyo Tech Phys

E_C Split and μ_e Enhancement -Uniaxial <110> Stress-

Effective Mass: Biaxial Stress

Effective masses are almost constant under *biaxial stress*.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Effective Mass: Uniaxial <100> Stress

Effective Mass: Uniaxial <110> Stress

Transverse effective mass in 2-fold valleys changes greatly by uniaxial <110> stress.

✓ $m_{\mathrm{T},\perp}$ increases as tensile strain increases.

Physics and Enginered ecreases as tensile strain tingreases us 2009

Mobility Enh. Vs Strain

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Quantum Confinement Effects and Mobility Enhancement

Subband Structure in Ultrathin-body SOI MOSFETs

K. Uchida, IEDM 2001, p633. Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

T_{SOI} Dependence of Phonon-Limited Mobility

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Band Diagram of SOI MOS Structure

S. Takagi, Jpn. J. Appl. Phys., 37 No. 3B (1998) p1289.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

Experimental Evidence of Mobility Enh.

Enhancement of mobility with a decrease in T_{SOI} is experimentally observed.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, July 8, 2009

SOI Thickness Fluctuation Induced

Scattering

Physics and Engineering of CMOS Devices, Ken UcKiddo et al, JEDM, 2002, p47.

SOI Thickness Induced Scattering (I)

SOI Thickness Induced Scattering (II)

