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Fading Theory

• In many circumstances, it is too complicated to 

describe all reflection, diffraction, and 

scattering processes that determine the 

different Multi-path Components.

Rather, it is often preferable to describe the 

probability that a channel parameter attains a 

certain  value.
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Deterministic vs. Stochastic
• Deterministic case : “x=y” means 2=2.

• Stochastic case : “x=y” means “p(x)=p(y)”.

• For example,  x = 1-x  holds

when x is a uniform  distributed random 

variable in the interval [0,1]

z: zero-mean Complex Gaussian Noise

∴ “z=-z=z*=-z*”

Z:zero-mean Complex Gaussian Vector

∴ “Z=UZ”  where U: Unitary matrix
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Mobile Communication Channel
In addition to Direct wave, there are many Reflection, Refraction and Diffraction waves.
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- Received signal fluctuates dramatically

→ Fading (Long-range, Medium-range, Short-range)
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Hierarchical stochastic structure

• Path loss : The large-scale mean itself depends on the 

“distance” between transmitter and receiver.

• Log-normal : Mean power, averaged over about 10 

wavelengths, itself shows fluctuations due to 

“shadowing” by large objects.

• Rayleigh and Nakagami-Rice : On a very-short-

distance scale, power fluctuates around a local mean 

value due to “interference” between different MPCs.
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Path loss and Power Control

• For 3G Wireless Communication System, i.e.

W-CDMA (Wideband Code Division Multiple 

Access) Power Control is used in order to 

alleviate “Near-Far Problem”.

Dynamic Range for Power Control is required 

more than 74dB.
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Path Loss Formula

• Land mobile electromagnetic wave propagation                

Propagation characteristics are important in designing a cell 

size, a transmitter and a receiver.

– Long distance variation (Okumura curve): The CCIR adopted the basic 

formula for the median path loss, based on Okumura's measurements.
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– Middle distance variation (Log-normal distribution: 

Shadowing)   Median over several ten or hundred 

wavelengths obeys a log-normal distribution.                                                                                            
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Central Limit Theorem

– The sum of statistically independent and 

identically distributed random variables with finite 

mean and variance approaches to a Gaussian 

distribution as the number of variables increases.

– Gaussian distribution is characterized only by 

mean and variance ( 2 parameters ).
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Shadowing effect

• Typical shadowing range is around 4-10dB

• 3GPP Channel model:

Suburban Macro 8dB

Urban Macro        8dB

Urban Micro        10dB(NLOS)  4dB(LOS)
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Rayleigh Fading

– Short distance variation (Rayleigh Fading) There 

are so many reflection and diffraction waves to 

generate a complicate standing wave pattern.     

The mobile station moves through there.
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BER Performance in Rayleigh 

Fading Channel

• BER ( Bit Error Rate ) is proportional to an 

exponential function of SNR in non-fading 

channel ( AWGN channel).

• BER is proportional to an inverse of SNR in 

fading channel.

• Because SNR in fading channel is a random 

variable of which PDF ( probability density 

function ) is an exponential function.
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- Fading significantly deteriorates QoS (i.e. bit error rate).
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BER in Rayleigh channel

• Instantaneous BER:

• Averaged BER:

• Pdf of SNR:

where Γ：average SNR
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Interference between Multi-path 

Components
• Rayleigh Fading Model
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– Envelope and phase distribution
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Rayleigh Distribution
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Normalized Rayleigh Distribution
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Normalized Nakagami/Rice 

Distribution
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• Power spectrum & Doppler effect

effect.Doppler   the todue 
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Power Spectrum
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Time derivative of random variables
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• Level crossing number & Fade duration
They are important parameters for mobile communication quality.

– Level crossing number 
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Therefore
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– Average fade duration time at the level ,sR
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• Random FM noise
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Random FM noise is independent on average received 

power.

This determines a lower bound of bit error rate.
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• Fading correlation
The correlation characteristics are necessary 
for the design of diversity system.

– Time correlation
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– Space correlation
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MIMO Transmission and 

Antenna correlation

• Antenna correlation decreases MIMO channel 

capacity if average SNR at RX antenna is 

equal to each other.
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– Frequency correlation
This is important parameter for Wide-band 
transmission. 
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A MAP Estimation of

Rayleigh Fading Channel
-- A Filter Theory of Complex Gaussian Process –

and Its Application to PHS SDMA
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Contents
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Background & Motivation

• Recursive Simulation Method for Rayleigh 

Fading Channel.

– How to write a computer program ?

• Fading Channel Coefficients should be 

estimated in SDMA PHS Systems
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• Mobile Communication Channel with 
MIMO Systems
– Time Variant Linear Reciprocal System

1# 1#

N#

MS BS

M M

Up

Down M#
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For  MN  -port Circuit, a    MNMN  scattering matrix S is defined;











BBMB

BMMM

SS

SS
tfS ),(

←N→ ←M→ ↑

N
↓

↑

M
↓

where

BMS : NM × Transfer Matrix of Up-Link from MS to BS

MBS : MN × Transfer Matrix of Down-Link from BS to MS
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By the reciprocity,

( ) ( ) t
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t
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Thus, the Down-Link Transfer Characteristics

can be determined by the Up-Link one.

The above equality, however, holds only for the same frequency 

and time.
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PHS system

• TDD ( Time Domain Duplex )

• TDMA ( Time Domain Multiple Access )

• 4 Time Slot Segmentation

• Introduction of SDMA increases a channel capacity by 
3 times or more.

• At the PHS base station, 4 antennas are installed.

• At most 4 data streams can be transmitted 
simultaneously by pre-coding at BS for down link.

• The idea is used in “i-Burst” system (IEEE802.20)
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• Conventionally

– Linear Extrapolation for Channel coefficient is 

used.

– Noise Filtering is not taken into account.

Up Up Down
t
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Complex Gaussian Stochastic 

Process

1) Rayleigh (or Rice) Fading Coefficient  :      X t

2) Random White Gaussian Noise :  tY

↓

3) Rayleigh Fading Coefficient contaminated with Noise:

     tYtXtZ 
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Stationary Gaussian Process can be characterized only by

Autocorrelation Function
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( ) Level Fading Average :=
2

tXA  
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For MAP Estimation, Cross-correlation Function is

also needed
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• MAP (LS) Estimation and Optimal Noise Reduction

– Wiener-Hopf Equation

b:VectorEstimator n CombinatioLinear Optimal
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for EstimatorMAP  
n

tX

  Zb
†

MAPn
tX

where

     DataNoisy Observed:,,
1-0

t

n
tZtZ KZ



2009/4/17 Wireless Communication Engineering I 54

Numerical Results
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Conclusion

• Estimation of Fading Coefficient is useful for 

TDMA/ TDD.

• Conventional Estimation is not satisfactory.

• Estimation Error can be greatly reduced by 

MAP Estimation.


