Information Security and Cryptography for Communications and Network

Agenda

- Classical Cryptography
- Shannon's Theory
- The Data Encryption Standard (DES)
- The RSA System and Factoring
- Other Public-key Cryptography
- Signature Schemes

2009/07/31

Wireless Communication Engineering I

Agenda (2)

- Hash Functions
- Key Distribution and Key Agreement
- Identification Schemes
- Authentication Codes
- Secret Sharing Schemes
- Pseudo-random Number Generation
- Zero-knowledge Proofs
- Power Analysis

Cryptosystem

A cryptosystem is a five-tuple (P, C, K, E, D), where the following conditions are satisfied:

- *1. P* is a finite set of possible plaintexts
- 2. *C* is a finite set of possible cipher-texts
- 3. *K*, the key-space, is a finite set of possible keys

4. For each $K \in \mathbf{K}$, there is an encryption rule $e_K \in \mathbf{E}$ and a corresponding decryption rule $d_K \in \mathbf{D}$. Each $e_K: \mathbf{P} \to \mathbf{C}$ and $d_K: \mathbf{C} \to \mathbf{P}$ are functions such that $d_K(e_K(x)) = x$ for every plaintext $x \in \mathbf{P}$.

Wireless Communication Engineering I

2009/07/31

Let $P = C = K = Z_{26}$. For $0 \le K \le 25$, define

$$e_{K}(x) = x + K \mod 26$$

Wireless Communication Engineering I

and

2009/07/31

$$d_K(y) = y - K \mod 26$$

 $(x, y \in \mathbb{Z}_{26}).$

Shift Cipher
Wireless Communication Engineering I

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose **X** and **Y** are random variables. We denote the probability that **X** takes on the value *x* by p(x), and the probability that **Y** takes on the value *y* by p(y). The joint probability p(x, y) is the probability that **X** takes on the value *x* and **Y** takes on the value *y*. The conditional probability p(x|y) denotes the probability that **X** takes on the value *x* given that **Y** takes on the value *y*. The random variables **X** and **Y** are said to be independent if p(x, y) = p(x) p(y) for all possible values *x* of **X** and *y* of **Y**.

2009/07/31	Wireless Communication Engineering I	2009/07/31	Wireless Communication Engineering I

Joint probability can be related to conditional probability by the formula

p(x, y) = p(x|y)p(y).

Interchanging *x* and *y*, we have that

$$p(x, y) = p(y|x)p(x).$$

From these two expressions, we immediately obtain the following result, which is known as Bayes' Theorem.

Bayes' Theorem If p(y) > 0, then

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}.$$

2009/07/31

Spurious Keys and Unicity Distance

Let (P, C, K, E, D) be a cryptosystem. Then

 $H(\mathbf{K}|\mathbf{C}) = H(\mathbf{K}) + H(\mathbf{P}) - H(\mathbf{C}).$

First, observe that $H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{C}|\mathbf{K}, \mathbf{P}) + H(\mathbf{K}, \mathbf{P})$. Now, the key and plaintext determine the ciphertext uniquely, since $y = e_K(x)$. This implies that $H(\mathbf{C}|\mathbf{K}, \mathbf{P}) = 0$. Hence, $H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{K}, \mathbf{P})$. But **K** and **P** are independent, so $H(\mathbf{K}, \mathbf{P}) = H(\mathbf{K}) + H(\mathbf{P})$. Hence,

 $H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{K}, \mathbf{P}) = H(\mathbf{K}) + H(\mathbf{P}).$

2009/07/31

Wireless Communication Engineering I

Entropy of a natural language

Suppose *L* is a natural language.

The entropy of *L* is defined to be the quantity

$$H_L = \lim_{n \to \infty} \frac{H(\mathbf{P}^n)}{n}$$

and the redundancy of L is defined to be

$$R_L = 1 - \frac{H_L}{\log_2 |\boldsymbol{P}|}$$

2009/07/31

Wireless Communication Engineering I

 H_L measures the entropy per letter of the language *L*. A random language would have entropy $\log_2 |\mathbf{P}|$.

So the quantity R_L measures the fraction of ``excess characters," which we think of as redundancy.

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_0 , at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$n_0 \approx \frac{\log_2 |\boldsymbol{K}|}{R_L \log_2 |\boldsymbol{P}|}$$

DES

- 1. Given a plaintext *x*, a bit-string x_0 is constructed by permuting the bits of *x* according to a (fixed) initial permutation IP. We write $x_0 = IP(x) = L_0R_0$, where L_0 comprises the first 32 bits of x_0 and R_0 the last 32 bits.
- 2. 16 iterations of a certain function are then computed. We compute $L_i R_i$, $1 \le i \le 16$, according to the following rule:

$$L_i = R_{i-1}$$
$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

2009/07/31

Wireless Communication Engineering I

One round of DES encryption

Public-key Cryptography

- RSA: Difficulty of factoring large integers
- Knapsack: Difficulty of the subset sum problem
- McEliece: Difficulty of decoding a linear code
- ElGamal: Difficulty of the discrete logarithm problem for finite fields
- Elliptic Curve: Work in the domain of elliptic curves rather than finite fields

I.
$$z = 1$$

 2. for $i = \ell - 1$ down to 0 do

 3. $z = z^2 \mod n$

 4. if $b_i = 1$ then

 $z = z \times x \mod n$

 The square-and-multiply algorithm to compute $x^b \mod n$

 RSA Cryptosystem and $d_x(y) = y^a \mod n$

 ElGamal Cryptosystem and $d_x(y) = y^a \mod n$

 Discrete Logs

 Problem Instance

 1. Bob generates two large primes, p and q

 ElGamal Cryptosystem and D Discrete Logs

 Problem Instance

 2000001
 Winter Commutation Lagorithm

 Discrete Logs

 Problem Instance

 I = (p, α, β) , where p is prime, $\alpha \in \mathbb{Z}_p$ is a primitive clear and $\beta \in \mathbb{Z}_p^{-1}$.

 Objective

 Setting up RSA

 We will denote this integra up log₀ β .

IGamal Cryptosystem and **Discrete Logs**

 $e_{\kappa}(x) = x^b \mod n$

 $d_{\kappa}(y) = y^{a} \mod n$

RSA Cryptosystem

Wireless Communication Engineering I

nstance β), where p is prime, $\alpha \in \mathbb{Z}_p$ is a primitive element,

nique integer $a, 0 \le a \le p - 2$ such that

 $\alpha^a \equiv \beta \pmod{p}$

note this integer *a* by $\log_{\alpha} \beta$.

(q, a, b), define

Let p be a prime such that the discrete log problem in Z_p is intractable, and let $\alpha \in \mathbb{Z}_p^*$ be a primitive element. Let $\boldsymbol{P} = Z_p^*, \boldsymbol{C} = Z_p^* \times Z_p^{\prime}, \text{ and define}$ where $\boldsymbol{K} = \{ (p, \alpha, a, \beta) : \beta \equiv \alpha^{a} (\text{mod } p) \}$ $y_1 = \alpha^k \mod p$ The values p, α and β are public, and a is secret. and For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $y_2 = x\beta^k \mod p$ $k \in \mathbb{Z}_{n-1}$, define For $y_1, y_2 \in \mathbb{Z}_n^*$, define $e_{\kappa}(x,k) = (y_1, y_2)$ $d_{\kappa}(y_1, y_2) = y_2(y_1^{a})^{-1} \mod p$ 2009/07/31 Wireless Communication Engineering 2009/07/31 Wireless Communication Engineering I where $\mathbf{e} \in (\mathbb{Z}_{2})^{n}$ is a random vector of weight t. Let G be a generating matrix for an [n, k, d] Goppa code C, where $n = 2^{m}$, d = 2t + 1 and k = n - mt. Let S be a matrix that Bob decrypts a ciphertext $\mathbf{y} \in (\mathbb{Z}_2)^n$ by means of the following is invertible over Z_2 , let P be $n \times n$ an permutation matrix, and operations: let G' = SGP. Let $P = (Z_2)^k$, $C = (Z_2)^n$, and let 1. Compute $\mathbf{y}_1 = \mathbf{y}P^{-1}$. $K = \{(G, S, P, G')\}$ 2. Decode \mathbf{y}_1 , obtaining $\mathbf{y}_1 = \mathbf{x}_1 + \mathbf{e}_1$, where $\mathbf{x}_1 \in \mathbf{C}$. where G, S, P, and G' are constructed as described above. 3. Compute $\mathbf{x}_0 \in (\mathbf{Z}_2)^k$ such that $\mathbf{x}_0 G = \mathbf{x}_1$. G' is public, and G, S, and P are secret. 4. Compute $\mathbf{x} = \mathbf{x}_0 S^{-1}$. For K = (G, S, P, G'), define $e_{\kappa}(\mathbf{x}, \mathbf{e}) = \mathbf{x}G' + \mathbf{e}$ McEliece Cryptosystem 2009/07/31 Wireless Communication Engineering 2009/07/31 Wireless Communication Engineering I

Signature Schemes

A signature scheme is a five-tuple (P, A, K, S, V), where the following conditions are satisfied:

- 1. *P* is a finite set of possible messages
- 2. A is a finite set of possible signatures
- 3. K, the key-space, is a finite set of possible keys

4. For each $K \in K$, there is a signing algorithm $sig_{\kappa} \in S$ and a corresponding verification algorithm $ver_{\kappa} \in V$. Each $sig_{\kappa}: P \to A$ and $ver_{K}: P \times A \rightarrow \{true, false\}$ are functions such that the following equation is satisfied for every message $x \in P$ and for every signature $y \in A$:

$$ver(x, y) = \begin{cases} true & if \quad y = sig(x) \\ false & if \quad y \neq sig(x) \end{cases}$$

Wireless Communication Engineering I 2009/07/31 Wireless Communication Engineering I Let p be a prime such that the discrete log problem in \mathbb{Z}_p is intractable, and let $\alpha \in \mathbb{Z}_p^*$ be a primitive element. Let $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{A} = \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$, and define Let n = pq, where p and q are primes. Let $\mathcal{P} = \mathcal{A} = \mathbb{Z}_n$, and define $\mathcal{K} = \{ (p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}.$ The values p, α and β are public, and a is secret. $\mathcal{K} = \{ (n, p, q, a, b) : n = pq, p, q \text{ prime}, ab \equiv 1 \pmod{\phi(n)} \}.$ For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}^*$, The values n and b are public, and the values p, q, a are secret. define $sig_{K}(x,k) = (\gamma,\delta),$ For K = (n, p, q, a, b), define where $\gamma = \alpha^k \mod p$ $sig_{K}(x) = x^{a} \mod n$ and $\delta = (x - a\gamma)k^{-1} \bmod (p - 1).$ $ver_K(x,y) = true \Leftrightarrow x \equiv y^b \pmod{n}$ For $x, \gamma \in \mathbb{Z}_p^*$ and $\delta \in \mathbb{Z}_{p-1}$, define $ver_K(x,\gamma,\delta) = true \Leftrightarrow \beta^{\gamma}\gamma^{\delta} \equiv \alpha^x \pmod{p}.$ **ElGamal Signature Scheme RSA Signature Scheme**

2009/07/31

and

 $(x, y \in \mathbb{Z}_n).$

2009/07/31

Wireless Communication Engineering I

2009/07/31

200 (2.g.a.

2009/07/31

Wireless Communication Engineering I

Undeniable Signature Scheme

2009/07/31

Wireless Communication Engineering I

Hash Functions

message	X	arbitrary length
	\downarrow	
message digest	z = h(x)	160 bits
	\downarrow	
signature	$y = sig_{K}(z)$	320 bits

Signing a message digest

2009/07/31

Wireless Communication Engineering I

Suppose p is a large prime and q = (p-1)/2 is also prime. Let α and β be two primitive elements of \mathbb{Z}_p . The value $\log_{\alpha} \beta$ is not public, and we assume that it is computationally infeasible to compute its value. The hash function

$$h: \{0, \ldots, q-1\} \times \{0, \ldots, q-1\} \to \mathbb{Z}_p \setminus \{0\}$$

is defined as follows:

$$h(x_1, x_2) = \alpha^{x_1} \beta^{x_2} \mod p.$$

Chaum-van Heijst-Pfitzmann Hash Function

2009/07/31

1. $A = 67452301$ (hex) B = efcdab89 (hex) C = 98badcfe (hex) D = 10325476 (hex) 2. for $i = 0$ to $N/16 - 1$ do 3. for $j = 0$ to 15 do X[j] = M[16i + j] 4. $AA = A$ BB = B CC = C DD = D 5. Round1 6. Round2 7. Round3 8. $A = A + AA$ B = B + BB C = C + CC D = D + DD	1. $A = (A + f(B, C, D) + X[0]) \ll 3$ 2. $D = (D + f(A, B, C) + X[1]) \ll 7$ 3. $C = (C + f(D, A, B) + X[2]) \ll 11$ 4. $B = (B + f(C, D, A) + X[3]) \ll 19$ 5. $A = (A + f(B, C, D) + X[4]) \ll 3$ 6. $D = (D + f(A, B, C) + X[5]) \ll 7$ 7. $C = (C + f(D, A, B) + X[6]) \ll 11$ 8. $B = (B + f(C, D, A) + X[7]) \ll 19$ 9. $A = (A + f(B, C, D) + X[8]) \ll 3$ 10. $D = (D + f(A, B, C) + X[9]) \ll 7$ 11. $C = (C + f(D, A, B) + X[10]) \ll 11$ 12. $B = (B + f(C, D, A) + X[11]) \ll 19$ 13. $A = (A + f(B, C, D) + X[12]) \ll 3$ 14. $D = (D + f(A, B, C) + X[13]) \ll 7$ 15. $C = (C + f(D, A, B) + X[14]) \ll 11$ 16. $B = (B + f(C, D, A) + X[15]) \ll 19$
The MD4 Hash Function	Round 1
07/31 Wireless Communication Engineering I	2009/07/31 Wireless Communication Engineering I
1. $A = (A + g(B, C, D) + X[0] + 5A827999) \ll 3$ 2. $D = (D + g(A, B, C) + X[4] + 5A827999) \ll 5$ 3. $C = (C + g(D, A, B) + X[8] + 5A827999) \ll 9$ 4. $B = (B + g(C, D, A) + X[12] + 5A827999) \ll 13$ 5. $A = (A + g(B, C, D) + X[1] + 5A827999) \ll 3$ 6. $D = (D + g(A, B, C) + X[5] + 5A827999) \ll 5$ 7. $C = (C + g(D, A, B) + X[9] + 5A827999) \ll 9$ 8. $B = (B + g(C, D, A) + X[13] + 5A827999) \ll 13$ 9. $A = (A + g(B, C, D) + X[2] + 5A827999) \ll 3$ 10. $D = (D + g(A, B, C) + X[6] + 5A827999) \ll 5$ 11. $C = (C + g(D, A, B) + X[10] + 5A827999) \ll 5$ 12. $B = (B + g(C, D, A) + X[14] + 5A827999) \ll 13$	$ \begin{array}{ll} 1. & A = (A + h(B, C, D) + X[0] + 6ED9EBA1) \lll 3 \\ 2. & D = (D + h(A, B, C) + X[8] + 6ED9EBA1) \lll 9 \\ 3. & C = (C + h(D, A, B) + X[4] + 6ED9EBA1) \lll 11 \\ 4. & B = (B + h(C, D, A) + X[12] + 6ED9EBA1) \lll 15 \\ 5. & A = (A + h(B, C, D) + X[2] + 6ED9EBA1) \lll 3 \\ 6. & D = (D + h(A, B, C) + X[10] + 6ED9EBA1) \lll 9 \\ 7. & C = (C + h(D, A, B) + X[6] + 6ED9EBA1) \lll 11 \\ 8. & B = (B + h(C, D, A) + X[14] + 6ED9EBA1) \lll 15 \\ 9. & A = (A + h(B, C, D) + X[1] + 6ED9EBA1) \lll 3 \\ 10. & D = (D + h(A, B, C) + X[9] + 6ED9EBA1) \lll 3 \\ 11. & C = (C + h(D, A, B) + X[5] + 6ED9EBA1) \lll 11 \\ 12. & B = (B + h(C, D, A) + X[13] + 6ED9EBA1) \lll 15 \\ 13. & A = (A + h(B, C, D) + X[13] + 6ED9EBA1) \lll 15 \\ 14. & B = (B + h(C, D, A) + X[13] + 6ED9EBA1) \lll 15 \\ 15. & A = (A + h(B, C, D) + X[13] + 6ED9EBA1) \lll 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \lll 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \lll 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \And 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15 \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + h(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) \end{Bmatrix} 15. \\ 15. & A = (A + A(C, D, A) + X[13] + 6ED9EBA1) $
13. $A = (A + g(B, C, D) + X[3] + 5A827999) \ll 3$ 14. $D = (D + g(A, B, C) + X[7] + 5A827999) \ll 5$	13. $A = (A + h(B, C, D) + X[3] + 6ED9EBA1) \ll 3$ 14. $D = (D + h(A, B, C) + X[11] + 6ED9EBA1) \ll 9$
15. $C = (C + g(D, A, B) + X[1] + 5A827999) \ll 9$	14. $D = (D + n(A, B, C) + X[11] + 0ED9EBA1) \iff 9$ 15. $C = (C + h(D, A, B) + X[7] + 6ED9EBA1) \ll 11$
16. $B = (B + g(C, D, A) + X[15] + 5A827999) \ll 13$	16. $B = (B + h(C, D, A) + X[15] + 6ED9EBA1) \ll 15$
Round 2	Round 3

Round Z

2009/07/31

Wireless Communication Engineering I

2009/07/31

Time-stamping

- 1. Bob computes z = h(x)
- 2. Bob computes $z' = h(z \| pub)$
- 3. Bob computes $y = sig_{K}(z')$
- 4. Bob publishes (*z*, *pub*, *y*) in the next day's newspaper.

2009/07/31

Wireless Communication Engineering I

Key Pre-distribution

- 1. A prime p and a primitive element $\alpha \in \mathbb{Z}_p^*$ are made public.
- 2. V computes

$$K_{\mathrm{U},\mathrm{V}} = \alpha^{a_{\mathrm{U}}a_{\mathrm{V}}} \bmod p = b_{\mathrm{U}}{}^{a_{\mathrm{V}}} \bmod p,$$

using the public value b_U from U's certificate, together with his own secret value a_V .

3. U computes

$$K_{\mathrm{U},\mathrm{V}} = \alpha^{a_{\mathrm{U}}a_{\mathrm{V}}} \mod p = b_{\mathrm{V}}^{a_{\mathrm{U}}} \mod p,$$

using the public value b_V from V's certificate, together with her own secret value a_U .

2009/07/31

Wireless Communication Engineering I

Identification Schemes

- 1. Bob chooses a *challenge*, x, which is a random 64-bit string. Bob sends x to Alice.
- 2. Alice computes

 $y = e_K(x)$

and sends it to Bob.

3. Bob computes

 $y' = e_K(x)$

and verifies that y' = y.

Challenge-and-response protocol

2009/07/31

Authentication Codes

An authentication code is a four-tuple (S, A, K, E), where the following conditions are satisfied:

- 1. S is a finite set of possible source states
- 2. A is a finite set of possible authentication tags
- 3. *K*, the keyspace, is a finite set of possible keys
- 4. For each $K \in K$, there is an authentication rule $e_K: S \to A$.

Secret Sharing Schemes

Let *t*, *w* be positive integers, $t \le w$. A (*t*, *w*)-threshold scheme is a method of sharing a key *K* among a set of *w* participants (denoted by *P*), in such a way that any *t* participants can compute the value of *K*, but no group of t-1 participants can do so.

Initialization Phase

1. D chooses w distinct, non-zero elements of \mathbb{Z}_p , denoted $x_i, 1 \le i \le w$ (this is where we require $p \ge w + 1$). For $1 \le i \le w$, D gives the value x_i to P_i . The values x_i are public.

Share Distribution

- 2. Suppose D wants to share a key $K \in \mathbb{Z}_p$. D secretly chooses (independently at random) t 1 elements of \mathbb{Z}_p , a_1, \ldots, a_{t-1} .
- 3. For $1 \le i \le w$, D computes $y_i = a(x_i)$, where

$$a(x) = K + \sum_{j=1}^{t-1} a_j x^j \mod p.$$

4. For $1 \le i \le w$, D gives the share y_i to P_i .

Shamir (*t*, *w*)-threshold scheme

2009/07/31

Wireless Communication Engineering I

Pseudo-random Number Generation

Wireless Communication Engineering I

Let k, ℓ be positive integers such that $\ell \ge k + 1$ (where ℓ is a specified polynomial function of k). A (k, ℓ) -pseudo - random bit generator (more briefly, a (k, ℓ) -PRBG) is a function $f: (Z_2)^k \to (Z_2)^\ell$ that can be computed in polynomial time (as a function of k). The input $s_0 \in (Z_2)^k$ is called the seed, and the output $f(s_0) \in (Z_2)^\ell$ is called a pseudo-random bit-string. Let $M \ge 2$ be an integer, and let $1 \le a, b \le M - 1$. Define $k = \lceil \log_2 M \rceil$ and let $k + 1 \le \ell \le M - 1$. For a seed s_0 , where $0 \le s_0 \le M - 1$, define

 $s_i = (as_{i-1} + b) \mod M$

	Zero-knowledge Proofs	
for $1 \le i \le \ell$, and then define $f(s_0) = (z_1, z_2,, z_\ell)$, where $z_i = s_i \mod 2$. $1 \le i \le \ell$. Then f is a (k, ℓ) -Linear Congruential Generator.	 Completeness If <i>x</i> is a yes-instance of the decision problem, then Vic will always accept Peggy's proof. Soundness If <i>x</i> is a no-instance of, then the probability that Vic accepts the proof is very small. 	
2009/07/31 Wireless Communication Engineering I	2009/07/31 Wireless Communication Engineering I	
Input: an integer <i>n</i> with unknown factorization $n = pq$, where <i>p</i> and <i>q</i> are prime, and $x \in QR(n)$ 1. Repeat the following steps $\log_2 n$ times: 2. Peggy chooses a random $v \in Z_n^*$ and computes $y = v^2 \mod n$. Peggy sends <i>y</i> to Vic. 3. Vic chooses a random integer <i>i</i> = 0 or 1 and sends it to Peggy	 4. Peggy computes z = uⁱv mod n, where u is a square root of x, and sends z to Vic. 5. Vic checks to see if z² = xⁱy(mod n). 6. Vic accepts Peggy's proof if the computation of step 5 is verified in each of the log₂ n rounds. 	
	A perfect zero-knowledge interactive proof system for Quadratic Residues	

Protection against power analysis

• Protect SPA: Perform the constant operation pattern

Square Multiply Square Multiply Square Multiply I Square Multiply

Processing time increased +33% for dummy operation

 Protect DPA: <u>Randomize the internal data</u> to hide the correlation Without protection
 With protection: randomize the data
 Image: state of the internal data to hide the correlation With protection: randomize the data
 Image: state of the internal data to hide the correlation With protection: randomize the data
 Image: state of the internal data to hide the correlation With protection: randomize the data
 Image: state of the internal data to hide the correlation with protection: randomize the data
 Image: state of the internal data to hide the correlation with protection: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the data
 Image: state of the internal data to hide the correlation: randomize the dat

Data hamming weight and power consumption

Power consumption grows in proportion with the hamming weight of the data (for certain IC chips)

From the paper of T.S.Messerges http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf

Protection against DPA

- Reduce the signal
 - Represent the data without hamming weight difference e.g. $0 \rightarrow 01, 1 \rightarrow 1$
 - Circuit size is increased
- Increase the noise
 - Add the noise generator circuit.
 - Protection is deactivated by increasing the number of the power consumption data
- Duplicate the data
 - Duplicate the intermediate data M into two random data M_1 and M_2 satisfying M=M_1 \oplus M_2
 - Processing time/circuit size is increased
- Update date the cryptographic key with certain period
 - If the key before is updated enough number of the power consumption data is collected, the attack is avoided.

Power analysis

- Reveal the cryptographic key stored in the smart card by observing the power consumption(Kocher, 1998)
- Power consumption shows internal operation and data value in the smart card, which are related with the key
- Simple and powerful attack

58

- Just add a resistor to Vcc of IC chip
- Instrument is low-cost (Digital oscilloscope)

This attack is possible even when the implemented cryptographic algorithm is mathematically secure

 \rightarrow Extra security protection mechanism must be implemented