Information Security and Cryptography for Communications and Network

Agenda

- Classical Cryptography
- Shannon's Theory
- The Data Encryption Standard (DES)
- The RSA System and Factoring
- Other Public-key Cryptography
- Signature Schemes

Agenda (2)

- Hash Functions
- Key Distribution and Key Agreement
- Identification Schemes
- Authentication Codes
- Secret Sharing Schemes
- Pseudo-random Number Generation
- Zero-knowledge Proofs
- Power Analysis

4. For each $K \in K$, there is an encryption rule $e_{K} \in E$ and a corresponding decryption rule $d_{K} \in D$. Each $e_{K}: \boldsymbol{P} \rightarrow \boldsymbol{C}$ and $d_{K}: \boldsymbol{C} \rightarrow \boldsymbol{P}$ are functions such that $d_{K}\left(e_{K}(x)\right)=x$ for every plaintext $x \in P$.

Wireless Communication Engineering I

Let $\boldsymbol{P}=\boldsymbol{C}=\boldsymbol{K}=\mathrm{Z}_{26}$. For $0 \leq K \leq 25$, define

$$
e_{K}(x)=x+K \bmod 26
$$

and

$$
d_{K}(y)=y-K \bmod 26
$$

$\left(x, y \in \mathrm{Z}_{26}\right)$.

The Communication Channel

Let $\boldsymbol{P}=\boldsymbol{C}=\mathrm{Z}_{26} . \boldsymbol{K}$ consists of all possible permutations of the 26 symbols $0,1, \ldots, 25$. For each permutation $\pi \in K$, define

$$
e_{\pi}(x)=\pi(x)
$$

and define

$$
d_{\pi}(y)=\pi^{-1}(y)
$$

where π^{-1} is the inverse permutation to π.

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose \mathbf{X} and \mathbf{Y} are random variables. We denote the probability that \mathbf{X} takes on the value x by $p(x)$, and the probability that \mathbf{Y} takes on the value y by $p(y)$. The joint probability $p(x, y)$ is the probability that \mathbf{X} takes on the value x and \mathbf{Y} takes on the value y.

The conditional probability $p(x \mid y)$ denotes the probability that \mathbf{X} takes on the value x given that \mathbf{Y} takes on the value y. The random variables \mathbf{X} and \mathbf{Y} are said to be independent if $p(x, y)=p(x) p(y)$ for all possible values x of \mathbf{X} and y of \mathbf{Y}.

Joint probability can be related to conditional probability by the formula

$$
p(x, y)=p(x \mid y) p(y) .
$$

Interchanging x and y, we have that

$$
p(x, y)=p(y \mid x) p(x) .
$$

From these two expressions, we immediately obtain the following result, which is known as Bayes' Theorem.

Bayes' Theorem
If $p(y)>0$, then

$$
p(x \mid y)=\frac{p(x) p(y \mid x)}{p(y)} .
$$

Spurious Keys and Unicity Distance

Let $(\boldsymbol{P}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})$ be a cryptosystem. Then

$$
H(\mathbf{K} \mid \mathbf{C})=H(\mathbf{K})+H(\mathbf{p})-H(\mathbf{C}) .
$$

First, observe that $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})+H(\mathbf{K}, \mathbf{P})$.
Now, the key and plaintext determine the ciphertext uniquely, since $y=e_{K}(x)$.
This implies that $H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})=0$. Hence,
$H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})$. But \mathbf{K} and \mathbf{P} are independent, so $H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})$. Hence,

$$
H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P}) .
$$

H_{L} measures the entropy per letter of the language L.
A random language would have entropy $\log _{2}|\boldsymbol{P}|$.

So the quantity R_{L} measures the fraction of "excess characters," which we think of as redundancy.

Entropy of a natural language

Suppose L is a natural language.
The entropy of L is defined to be the quantity

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(\mathbf{P}^{n}\right)}{n}
$$

and the redundancy of L is defined to be

$$
R_{L}=1-\frac{H_{L}}{\log _{2}|P|}
$$

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_{0}, at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$
n_{0} \approx \frac{\log _{2}|K|}{R_{L} \log _{2}|P|}
$$

DES

1. Given a plaintext x, a bit-string x_{0} is constructed by permuting the bits of x according to a (fixed) initial permutation IP. We write $x_{0}=\operatorname{IP}(x)=L_{0} R_{0}$, where L_{0} comprises the first 32 bits of x_{0} and R_{0} the last 32 bits.
2. 16 iterations of a certain function are then computed. We compute $L_{i} R_{i}, 1 \leq i \leq 16$, according to the following rule:

$$
\begin{aligned}
& L_{i}=R_{i-1} \\
& R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

One round of DES encryption
where \oplus denotes the exclusive-or of two bit-strings.
f is a function that we will describe later, and K_{1}, K_{2}, \ldots, K_{16} are each bit-strings of length 48 computed as a function of the key K. (Actually, each K_{i} is a permuted selection of bits from K.) $K_{1}, K_{2}, \ldots, K_{16}$ comprises the key schedule.
One round of encryption is depicted in Figure 3.1
3. Apply the inverse permutation IP^{-1} to the bit-string $R_{16} L_{16}$, obtaining the cipher-text y.
That is, $y=\mathrm{IP}^{-1}\left(R_{16} L_{16}\right)$. Note the inverted order of L_{16} and R_{16}.

Public-key Cryptography

- RSA: Difficulty of factoring large integers
- Knapsack: Difficulty of the subset sum problem
- McEliece: Difficulty of decoding a linear code
- ElGamal: Difficulty of the discrete logarithm problem for finite fields
- Elliptic Curve: Work in the domain of elliptic curves rather than finite fields

1. $z=1$
2. for $i=\ell-1$ down to 0 do
3. $z=z^{2} \bmod n$
4. if $b_{i}=1$ then

$$
Z=Z \times x \bmod n
$$

The square-and-multiply algorithm to compute $x^{b} \bmod n$

1. Bob generates two large primes, p and q
2. Bob computes $n=p q$ and $\phi(n)=(p-1)(q-1)$
3. Bob chooses a random $b(1<b<\phi(n))$ such that $\operatorname{gcd}(b, \phi(n))=1$
4. Bob computes $a=b^{-1} \bmod \phi(n)$ using the Euclidean algorithm
5. Bob publishes n and b in a directory as his public key.

Let $n=p q$, where p and q are primes. Let $\boldsymbol{P}=\boldsymbol{C}=\mathrm{Z}_{n}$, and define

$$
K=\{(n, p, q, a, b): n=p q, p, q \text { prime }, a b \equiv 1(\bmod \phi(n))\}
$$

For $K=(n, p, q, a, b)$, define

$$
e_{K}(x)=x^{b} \bmod n
$$

and
$d_{K}(y)=y^{a} \bmod n$
$\left(x, y \in Z_{n}\right)$ The values n and b are public, and the values p, q, a are secret.

RSA Cryptosystem
2009/07/31
Wireless Communication Engineering I

ElGamal Cryptosystem and Discrete Logs

Problem Instance

$I=(p, \alpha, \beta)$, where p is prime, $\alpha \in \mathrm{Z}_{p}$ is a primitive element, and $\beta \in \mathrm{Z}_{p}{ }^{*}$.

Objective
Find the unique integer $a, 0 \leq a \leq p-2$ such that

$$
\alpha^{a} \equiv \beta(\bmod p)
$$

We will denote this integer a by $\log _{\alpha} \beta$.

Let p be a prime such that the discrete \log problem in Z_{p} is intractable, and let $\alpha \in \mathrm{Z}_{p}{ }^{*}$ be a primitive element.
Let $\boldsymbol{P}=\mathrm{Z}_{p}{ }^{*}, \boldsymbol{C}=\mathrm{Z}_{p}{ }^{*} \times \mathrm{Z}_{p}{ }^{*}$, and define

$$
K=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\}
$$

The values p, α and β are public, and a is secret.
For $K=(p, \alpha, a, \beta)$, and for a (secret) random number $k \in Z_{p-1}$, define

$$
e_{K}(x, k)=\left(y_{1}, y_{2}\right)
$$

where

$$
y_{1}=\alpha^{k} \bmod p
$$

and

$$
y_{2}=x \beta^{k} \bmod p
$$

For $y_{1}, y_{2} \in \mathrm{Z}_{p}{ }^{*}$, define

$$
d_{K}\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1}^{a}\right)^{-1} \bmod p
$$

Let G be a generating matrix for an $[n, k, d]$ Goppa code \mathbf{C}, where $n=2^{m}, d=2 t+1$ and $k=n-m t$. Let S be a matrix that is invertible over Z_{2}, let P be $n \times n$ an permutation matrix, and let $G^{\prime}=S G P$. Let $\boldsymbol{P}=\left(\mathrm{Z}_{2}\right)^{k}, \boldsymbol{C}=\left(\mathrm{Z}_{2}\right)^{n}$, and let

$$
K=\left\{\left(G, S, P, G^{\prime}\right)\right\}
$$

where G, S, P, and G^{\prime} are constructed as described above. G^{\prime} is public, and G, S, and P are secret.
For $K=\left(G, S, P, G^{\prime}\right)$, define $e_{K}(\mathbf{x}, \mathbf{e})=\mathbf{x} G^{\prime}+\mathbf{e}$
McEliece Cryptosystem
where $\mathbf{e} \in\left(\mathrm{Z}_{2}\right)^{n}$ is a random vector of weight t.
Bob decrypts a ciphertext $\mathbf{y} \in\left(\mathrm{Z}_{2}\right)^{n}$ by means of the following operations:

1. Compute $\mathbf{y}_{1}=\mathbf{y} P^{-1}$.

2. Decode \mathbf{y}_{1}, obtaining $\mathbf{y}_{1}=\mathbf{x}_{1}+\mathbf{e}_{1}$, where $\mathbf{x}_{1} \in \mathbf{C}$.
3. Compute $\mathbf{x}_{0} \in\left(\mathbf{Z}_{2}\right)^{k}$ such that $\mathbf{x}_{0} G=\mathbf{x}_{1}$.
4. Compute $\mathbf{x}=\mathbf{x}_{0} S^{-1}$.

Signature Schemes

A signature scheme is a five-tuple $(\boldsymbol{P}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{S}, \boldsymbol{V})$, where the following conditions are satisfied:

1. \boldsymbol{P} is a finite set of possible messages
2. \boldsymbol{A} is a finite set of possible signatures
3. \boldsymbol{K}, the key-space, is a finite set of possible keys
4. For each $K \in K$, there is a signing algorithm $\operatorname{sig}_{K} \in \boldsymbol{S}$ and a corresponding verification algorithm ver $_{K} \in \boldsymbol{V}$. Each $\operatorname{sig}_{K}: \boldsymbol{P} \rightarrow \boldsymbol{A}$ and $v e r_{K}: P \times A \rightarrow\{$ true, false $\}$ are functions such that the following equation is satisfied for every message $x \in P$ and for every signature $y \in \boldsymbol{A}$

$$
\operatorname{ver}(x, y)=\left\{\begin{array}{lll}
\text { true } & \text { if } & y=\operatorname{sig}(x) \\
\text { false } & \text { if } & y \neq \operatorname{sig}(x)
\end{array}\right.
$$

$$
\begin{gathered}
\text { Let } n=p q, \text { where } p \text { and } q \text { are primes. Let } \mathcal{P}=\mathcal{A}=\mathbb{Z}_{n}, \text { and define } \\
\mathcal{K}=\{(n, p, q, a, b): n=p q, p, q \text { prime, } a b \equiv 1(\bmod \phi(n))\} .
\end{gathered}
$$

The values n and b are public, and the values p, q, a are secret.
For $K=(n, p, q, a, b)$, define

$$
\operatorname{sig}_{K}(x)=x^{a} \bmod n
$$

and
$\operatorname{ver}_{K}(x, y)=$ true $\Leftrightarrow x \equiv y^{b}(\bmod n)$
$\left(x, y \in \mathbb{Z}_{n}\right)$.

$$
\begin{aligned}
& \text { Let } p \text { be a prime such that the discrete log problem in } \mathbb{Z}_{p} \text { is intractable, } \\
& \text { and let } \alpha \in \mathbb{Z}_{p}{ }^{*} \text { be a primitive element. Let } \mathcal{P}=\mathbb{Z}_{p}{ }^{*}, \mathcal{A}=\mathbb{Z}_{p}{ }^{*} \times \mathbb{Z}_{p-1}, \\
& \text { and define } \quad \mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\} . \\
& \text { The values } p, \alpha \text { and } \beta \text { are public, and } a \text { is secret. } \\
& \text { For } K=(p, \alpha, a, \beta) \text {, and for a (secret) random number } k \in \mathbb{Z}_{p-1}{ }^{*} \text {, } \\
& \text { define } \\
& \qquad \text { sig }_{K}(x, k)=(\gamma, \delta), \\
& \text { where } \\
& \qquad \gamma=\alpha^{k} \bmod p \\
& \text { and } \\
& \qquad \delta=(x-a \gamma) k^{-1} \bmod (p-1) . \\
& \text { For } x, \gamma \in \mathbb{Z}_{p}{ }^{*} \text { and } \delta \in \mathbb{Z}_{p-1}, \text { define } \\
& v_{\text {ver }}^{K}(x, \gamma, \delta)=\operatorname{true} \Leftrightarrow \beta^{\gamma} \gamma^{\delta} \equiv \alpha^{x}(\bmod p) .
\end{aligned}
$$

Let p be a 512 -bit prime such that the discrete \log problem in \mathbb{Z}_{p} is intractible, and let q be a 160-bit prime that divides $p-1$. Let $\alpha \in \mathbb{Z}_{p}{ }^{*}$ be a q th root of 1 modulo p. Let $\mathcal{P}=\mathbb{Z}_{q}{ }^{*}, \mathcal{A}=\mathbb{Z}_{q} \times \mathbb{Z}_{q}$, and define

$$
\mathcal{K}=\left\{(p, q, \alpha, a, \beta): \beta \equiv \alpha^{\alpha}(\bmod p)\right\}
$$

The values p, q, α and β are public, and a is secret.
For $K=(p, q, \alpha, a, \beta)$, and for a (secret) random number $k, 1 \leq k \leq$ $q-1$, define

$$
\operatorname{sig}_{K}(x, k)=(\gamma, \delta)
$$

where
and
$\gamma=\left(\alpha^{k} \bmod p\right) \bmod \boldsymbol{q}$

$$
\delta=(x+a \gamma) k^{-1} \bmod q .
$$

For $x \in \mathbb{Z}_{q}{ }^{*}$ and $\gamma, \delta \in \mathbb{Z}_{q}$, verification is done by performing the fol-

$$
\begin{aligned}
& e_{1}=x \delta^{-1} \bmod q \\
& e_{2}=\gamma \delta^{-1} \bmod q
\end{aligned}
$$

$\operatorname{ver}_{K}(x, \gamma, \delta)=$ true $\Leftrightarrow\left(\alpha^{e_{1}} \beta^{e_{2}} \bmod p\right) \bmod q=\gamma$.

Hash Functions

message	x	arbitrary length
	\downarrow	
message digest	$z=h(x)$	160 bits
	\downarrow	
signature	$y=$	$\operatorname{sig}_{K}(z)$

Let $p=2 q+1$ be a prime such that q is prime and the discrete log $1 \leq a<q-1$ and define $\beta=\alpha^{a}$ mod p Let G denote the multiplicative 1) \mathcal{Z}_{p} of G (G co p). Let $\mathcal{P}=\mathcal{A}=G$, and define

$$
\mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{\alpha}(\bmod p)\right\}
$$

The values p, α and β are public, and a is secret.
For $K=(p, \alpha, a, \beta)$ and $x \in G$, define

$$
y=\operatorname{sig}_{K}(x)=x^{a} \bmod p
$$

For $x, y \in G$, verification is done by executing the following protocol:

1. Alice chooses e_{1}, e_{2} at random, $e_{1}, e_{2} \in \mathbb{Z}_{q}{ }^{*}$
2. Alice computes $c=y^{e_{1}} \beta^{e_{2}} \bmod p$ and sends it to Bob.
3. Bob computes $d=c^{a^{-1} \bmod q} \bmod p$ and sends it to Alice.
4. Alice accepts y as a valid signature if and only if
$d \equiv x^{e_{1}} \alpha^{e_{2}}(\bmod p)$.
Undeniable Signature Scheme

Suppose p is a large prime and $q=(p-1) / 2$ is also prime. Let α and β be two primitive elements of \mathbb{Z}_{p}. The value $\log _{\alpha} \beta$ is not public, and we assume that it is computationally infeasible to compute its value.
The hash function

$$
h:\{0, \ldots, q-1\} \times\{0, \ldots, q-1\} \rightarrow \mathbb{Z}_{p} \backslash\{0\}
$$

is defined as follows:

$$
h\left(x_{1}, x_{2}\right)=\alpha^{x_{1}} \beta^{x_{2}} \bmod p
$$

```
1. }A=67452301 (hex
    B=efcdab89 (hex)
    C=98badcfe (hex)
    D = 10325476 (hex)
```

for $i=0$ to $N / 16-1$ do
$X[j]=M[16 i+j]$
$A A=A$
$B B=B$
$C C=C$
$C=C$
$D D=D$
Round1
Round2
Round 3
$A=A+A A$
$B=B+B B$
$C=C+C C$
$D=D+D D$

1. $A=(A+f(B, C, D)+X[0]) \lll 3$
2. $D=(D+f(A, B, C)+X[1]) \lll 7$
3. $C=(C+f(D, A, B)+X[2]) \lll 11$
4. $B=(B+f(C, D, A)+X[3]) \lll 19$
5. $A=(A+f(B, C, D)+X[4]) \lll 3$
6. $D=(D+f(A, B, C)+X[5]) \lll 7$
7. $C=(C+f(D, A, B)+X[6]) \lll 11$
8. $B=(B+f(C, D, A)+X[7]) \lll 19$
9. $A=(A+f(B, C, D)+X[8]) \lll 3$
10. $D=(D+f(A, B, C)+X[9]) \lll 7$
11. $C=(C+f(D, A, B)+X[10]) \lll 11$
12. $B=(B+f(C, D, A)+X[11]) \lll 19$
13. $A=(A+f(B, C, D)+X[12]) \lll 3$
14. $D=(D+f(A, B, C)+X[13]) \lll 7$
15. $C=(C+f(D, A, B)+X[14]) \lll 11$
16. $B=(B+f(C, D, A)+X[15]) \lll 19$

The MD4 Hash Function

Round 1

> $A=(A+g(B, C, D)+X[0]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[4]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[8]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[12]+5 A 827999) \lll 13$ $A=(A+g(B, C, D)+X[1]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[5]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[9]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[13]+5 A 827999) \lll 13$ $A=(A+g(B, C, D)+X[2]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[6]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[10]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[14]+5 A 827999) \lll 13$ $A=(A+g(B, C, D)+X[3]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[7]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[11]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[15]+5 A 827999) \lll 13$

1. $A=(A+h(B, C, D)+X[0]+6 E D 9 E B A 1) \lll 3$
2. $D=(D+h(A, B, C)+X[8]+6 E D 9 E B A 1) \lll 9$
3. $C=(C+h(D, A, B)+X[4]+6 E D 9 E B A 1) \lll 11$
4. $B=(B+h(C, D, A)+X[12]+6 E D 9 E B A 1) \lll 15$
5. $A=(A+h(B, C, D)+X[2]+6 E D 9 E B A 1) \lll 3$
6. $D=(D+h(A, B, C)+X[10]+6 E D 9 E B A 1) \lll 9$
7. $C=(C+h(D, A, B)+X[6]+6 E D 9 E B A 1) \lll 11$
8. $B=(B+h(C, D, A)+X[14]+6 E D 9 E B A 1) \lll 15$
9. $A=(A+h(B, C, D)+X[1]+6 E D 9 E B A 1) \lll 3$
10. $D=(D+h(A, B, C)+X[9]+6 E D 9 E B A 1) \lll 9$
11. $C=(C+h(D, A, B)+X[5]+6 E D 9 E B A 1) \lll 11$
12. $B=(B+h(C, D, A)+X[13]+6 E D 9 E B A 1) \lll 15$
13. $A=(A+h(B, C, D)+X[3]+6 E D 9 E B A 1) \lll 3$
14. $D=(D+h(A, B, C)+X[11]+6 E D 9 E B A 1) \lll 9$
15. $C=(C+h(D, A, B)+X[7]+6 E D 9 E B A 1) \lll 11$
16. $B=(B+h(C, D, A)+X[15]+6 E D 9 E B A 1) \lll 15$

Round 2
Round 3

Time-stamping

1. Bob computes $z=h(x)$
2. Bob computes $z^{\prime}=h(z \| p u b)$
3. Bob computes $y=\operatorname{sig}_{K}\left(z^{\prime}\right)$
4. Bob publishes ($z, p u b, y$) in the next day's newspaper.

Identification Schemes

1. Bob chooses a challenge, x, which is a random 64 -bit string. Bob sends x to Alice.
2. Alice computes

$$
y=e_{K}(x)
$$

and sends it to Bob.
3. Bob computes

$$
y^{\prime}=e_{K}(x)
$$

and verifies that $y^{\prime}=y$.

Challenge-and-response protocol

Key Pre-distribution

1. A prime p and a primitive element $\alpha \in \mathbb{Z}_{p}{ }^{*}$ are made public.
2. V computes

$$
K_{\mathrm{U}, \mathrm{~V}}=\alpha^{a_{\mathrm{U}} a_{\mathrm{V}}} \bmod p=b_{\mathrm{U}}^{a_{\mathrm{V}}} \bmod p
$$

using the public value b_{U} from U's certificate, together with his own secret value a_{V}.
3. U computes

$$
K_{\mathrm{U}, \mathrm{~V}}=\alpha^{a_{\mathrm{U}} a_{\mathrm{V}}} \bmod p=b_{\mathrm{V}}^{a_{\mathrm{U}}} \bmod p
$$

using the public value b_{V} from V's certificate, together with her own secret value a_{U}.

Authentication Codes

An authentication code is a four-tuple ($\mathbf{S}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{E}$), where the following conditions are satisfied:

1. \boldsymbol{S} is a finite set of possible source states
2. \boldsymbol{A} is a finite set of possible authentication tags
3. \boldsymbol{K}, the keyspace, is a finite set of possible keys
4. For each $K \in K$, there is an authentication rule $e_{K}: S \rightarrow \boldsymbol{A}$.

Secret Sharing Schemes

Let t, w be positive integers, $t \leq w$.
A (t, w)-threshold scheme is a method of sharing a key K among a set of w participants (denoted by \boldsymbol{P}), in such a way that any t participants can compute the value of K, but no group of $t-1$ participants can do so.

Pseudo-random Number Generation

Let k, ℓ be positive integers such that $\ell \geq k+1$ (where ℓ is a specified polynomial function of k).
A (k, ℓ)-pseudo-random bit generator (more briefly, a (k, ℓ)-PRBG $)$ is a function $f:\left(\mathrm{Z}_{2}\right)^{k} \rightarrow\left(\mathrm{Z}_{2}\right)^{\ell}$ that can be computed in polynomial time (as a function of k). The input $s_{0} \in\left(\mathrm{Z}_{2}\right)^{k}$ is called the seed, and the output $f\left(s_{0}\right) \in\left(\mathrm{Z}_{2}\right)^{\ell}$ is called a pseudo-random bit-string.

Initialization Phase

1. $\quad D$ chooses w distinct, non-zero elements of \mathbb{Z}_{p}, denoted $x_{i}, 1 \leq i \leq$ w (this is where we require $p \geq w+1$). For $1 \leq i \leq w, D$ gives the value x_{i} to P_{i}. The values x_{i} are public.

Share Distribution

2. Suppose D wants to share a key $K \in \mathbb{Z}_{p} . D$ secretly chooses (independently at random) $t-1$ elements of $\mathbb{Z}_{p}, a_{1}, \ldots, a_{t-1}$.
3. For $1 \leq i \leq w, D$ computes $y_{i}=a\left(x_{i}\right)$, where

$$
a(x)=K+\sum_{j=1}^{t-1} a_{j} x^{j} \bmod p
$$

4. For $1 \leq i \leq w, D$ gives the share y_{i} to P_{i}.

Shamir (t, w)-threshold scheme

2009/07/31 Wireless Communication Engineering I

$$
\begin{aligned}
& \text { Let } M \geq 2 \text { be an integer, and let } 1 \leq a, b \leq M-1 \text {. Define } \\
& k=\left\lceil\log _{2} M\right\rceil \text { and let } k+1 \leq \ell \leq M-1 . \\
& \text { For a seed } s_{0} \text {, where } 0 \leq s_{0} \leq M-1 \text {, define } \\
& \qquad s_{i}=\left(a s_{i-1}+b\right) \bmod M
\end{aligned}
$$

for $1 \leq i \leq \ell$, and then define

$$
f\left(s_{0}\right)=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right),
$$

where

$$
z_{i}=s_{i} \bmod 2 .
$$

$1 \leq i \leq \ell$. Then f is a (k, ℓ)-Linear Congruential Generator.

Linear Congruential Generator

Input: an integer n with unknown factorization $n=p q$, where p and q are prime, and $x \in Q R(n)$

1. Repeat the following steps $\log _{2} n$ times:
2. Peggy chooses a random $v \in Z_{n}{ }^{*}$ and computes

$$
y=v^{2} \bmod n
$$

Peggy sends y to Vic.
3. Vic chooses a random integer $i=0$ or 1 and sends it to Peggy.

Zero-knowledge Proofs

- Completeness

If x is a yes-instance of the decision problem, then Vic will always accept Peggy's proof.

- Soundness

If x is a no-instance of, then the probability that Vic accepts the proof is very small.
4. Peggy computes

$$
z=u^{i} v \bmod n
$$

where u is a square root of x, and sends z to Vic.
5. Vic checks to see if

$$
z^{2} \equiv x^{i} y(\bmod n)
$$

6. Vic accepts Peggy's proof if the computation of step 5 is verified in each of the $\log _{2} n$ rounds.

A perfect zero-knowledge interactive proof system for Quadratic Residues

Magnetic stripe card vs Smart Card

- Magnetic stripe card : significant information can be read from the surface of the stripe

Easy to forge

- Smart card: significant information is stored in the IC chip

Encrypted

 compmunicationHard to forge

Smartcard is high-security token with encryption communication

Attacks against smart card

Non-invasive attack
Side-channel attack (SCA)
Protection against SCA is required

Power analysis

- SPA(Simple Power Analysis): Observe the internal operation processing
- Reveal the key from single power trace

- DPA(Differential Power Analysis): Observe the internal data
- Reveal the key from the differential power trace

Protection must be secure against SPA and DPA in both

Protection against power analysis

- Protect SPA: Perform the constant operation pattern

Processing time increased $+33 \%$ for dummy operation

- Protect DPA: Randomize the internal data to hide the correlation

Data hamming weight and power consumption

\square Set up
Result
Measuring Power Consumption

Hamming Weight or Hamming Distance Leakage

Power consumption grows in proportion with the hamming weight of the data (for certain IC chips)

From the paper of T.S.Messerges http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf

Protection against DPA

- Reduce the signal
- Represent the data without hamming weight difference
e.g. $0 \rightarrow 01,1 \rightarrow 1$
- Circuit size is increased
- Increase the noise
- Add the noise generator circuit.
- Protection is deactivated by increasing the number of the power consumption data
- Duplicate the data
- Duplicate the intermediate data M into two random data M_{1} and M_{2} satisfying $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$
- Processing time/circuit size is increased
- Update date the cryptographic key with certain period
- If the key before is updated enough number of the power consumption data is collected, the attack is avoided.

Power analysis

- Reveal the cryptographic key stored in the smart card by observing the power consumption(Kocher, 1998)
- Power consumption shows internal operation and data value in the smart card, which are related with the key
- Simple and powerful attack
- Just add a resistor to Vcc of IC chip
- Instrument is low-cost (Digital oscilloscope)

This attack is possible even when the implemented cryptographic algorithm is mathematically secure
\rightarrow Extra security protection mechanism must be implemented

