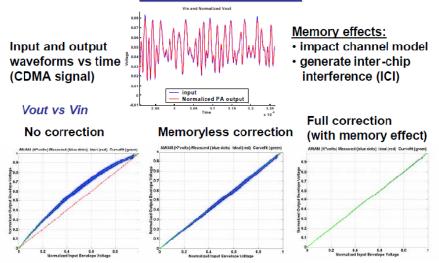
Memory Effect in Power Amplifiers

- Nonlinearity of PA
- Modeling of Nonlinearity
- Intermodulation, EVM, ACPR
- Distortion Compensation
- High Efficient PA


2009/7/17

Wireless Communication Engineering I

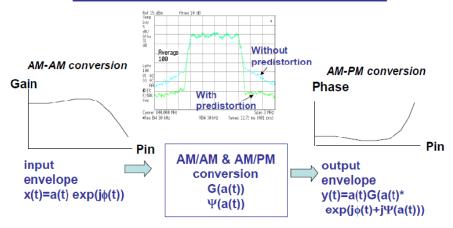
Outline

- Introduction
- Signals, behavioral models, and memory effects
- Impact of decresting and truncating realistic signals
- Measurement based predictions of digital predistortion
 - memoryless compensation
 - deterministic memory effect compensation
- Examples of RF power amplifiers
- Conclusions

Time Domain Response of Power Amplifiers

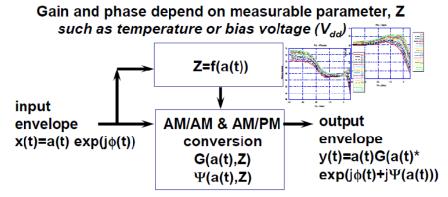
Signals and Memory Model <u>Transfer Functions</u>

Goal: To obtain a transfer function or an impulse response for the RF envelope.


Procedure: Use different test signals to extract the circuit performance over the stimulus parameter space.

- CW signals
- Shaped RF envelopes
- Parameterized CW Multi-sine generated
- Two tone
- Realistic truncated waveforms

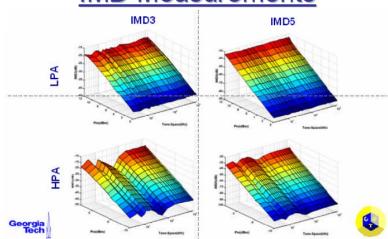
Perturbation techniques:


Small signal expansion about large signal state

"Standard Model" for Characterization of Nonideal Amplifier

Measure with single RF sinewave input - CW (power sweep of S21 with network analyzer) Envelope time-scale for simulation Spectral shape computed via FFT

<u>Augmented Behavioral</u> Characterization – ABC Model

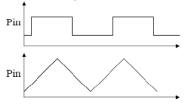

Independently measure gain and phase vs Z

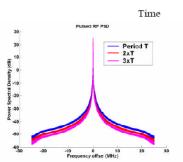
Develop simple model (possibly with memory!)

of Z dependence on input amplitude

Asbeck, et al (2002)

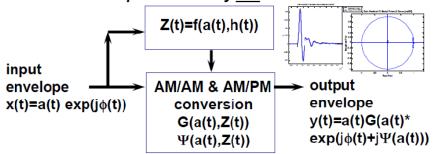
IMD Measurements




Extraction of Accurate Behavioral Models for Power Amplifiers with Memory Effects using Two Tone Measurements. Hyunchul Ku. Michael D. McKinley and J. Stevenson Kenney. IMS 2002

Shaped RF Envelopes

Envelope Domain:

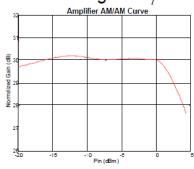

- · Square waveforms
- Triangle waveforms
- · Greater spectral richness
- Expanded exploration of internal states
 - Bias
 - Thermal
 - Others

Augmented Behavioral Characterization – Blackbox ABC

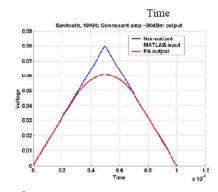
Gain and phase depend on additional parameter, **Z** but this parameter may not be accessible

Extract gain residue, h, from square wave measurement Extract pole/zero model for gain residue

and apply as modulation on **Z**(t).

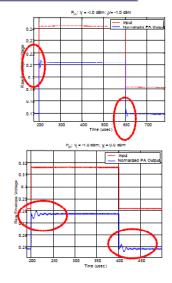

Draxler, et al (2003)

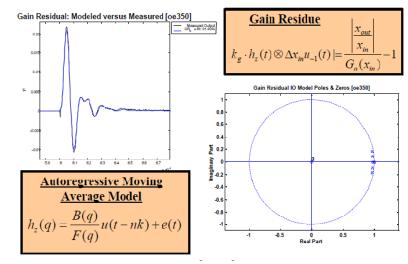
AM/AM & AM/PM Comparison CW and Sawtooth Waveforms


AM/AM and AM/PM becomes:

$$G_0 = E \left\{ \frac{P_o(n)}{P_i(n)} \middle| P_i \right\}$$

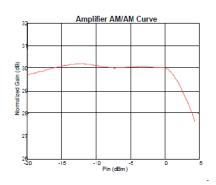
over the range of P_i .

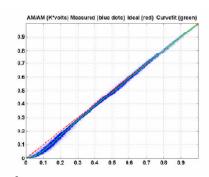


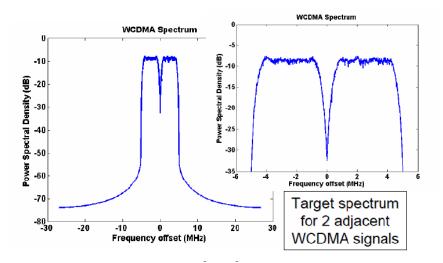


Squarewave Extraction Data

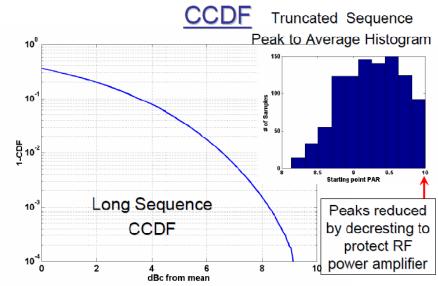
- •Obtain data at multiple power levels for the square wave over a wide operating region.
- Select a number of samples over a the region with consistent characteristics.
- •Remove the steady state gain characteristics.
- •Identify the time sequence to be used for extraction of the gain residue.
- •Over a large range the gain residue is amplitude independent; however, it does change as the amplifier goes into compression.




Auto-Regressive Moving Average (ARMA) Model of Gain Residue


Memoryless Model for Arbitrary Waveform

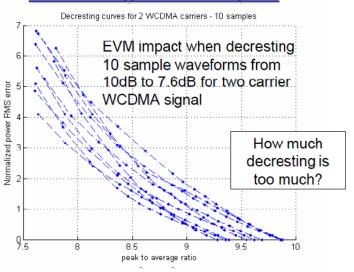
- AM/AM and AM/PM compression characteristics
- · Instantaneous gain expected values
- Deviations highlight shifts: thermal equilibrium, bias network state changes...



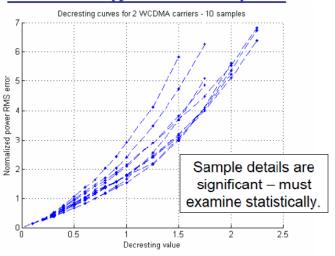
2 Carrier WCDMA Waveform: Power Spectral Density

2x WCDMA Waveform -

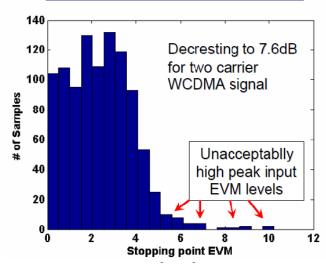
Normalized Waveform RMS Error

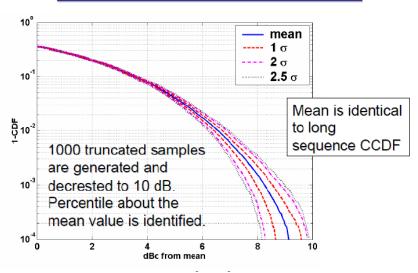

- Over all sample points, n, of a single measurement:
 - Normalize average power of signals to unity: x_a , y_a
- Generate the rms difference between the normalized vectors

$$\underline{x}_{\alpha} = \frac{\sqrt{2 \cdot \underline{x}}}{\sqrt{\frac{\sum_{n} (x_{0}^{2})}{n}}}$$


$$\underline{y}_{\alpha} = \frac{\sqrt{2} \cdot \underline{y}}{\sqrt{\frac{\sum_{n} (y_{0}^{2})}{n}}}$$

$$EVM_{rms} = \sqrt{\frac{\sum_{n} (|y_{\alpha} - x_{\alpha}|^{2})}{n}}$$


2x WCDMA Waveform – Decresting – EVM impact


2x WCDMA Waveform – Decresting – EVM impact

2x WCDMA Waveform – Decresting EVM impact

<u>2x WCDMA Waveform –</u> <u>Ensemble CCDF Variation Plot</u>

DPD Projections

Take two measurements of the same, production qualified, exploration waveform:

- First measurement sets the expected gain characteristics (memoryless impact)
- Second measurement is used to roughly estimate the non-deterministic memory effect (more than 2 improves accuracy).

DPD Projections

- Original input: *xI(n)*
- Original output: $yI_1(n)$
- Second output: $yI_2(n)$
- Amplifier gain: $G_n(\underline{xI}_n)$
- Expected gain: $G(xI_n)$

$yI_n - G(xI_n) \cdot xI_n = Mem + Noise$

Noise
$$\approx \frac{|yI_1(n) - yI_2(n)|}{2}$$

 $yI_1(n) = G_n(\underline{xI}_n) \cdot xI(n)$

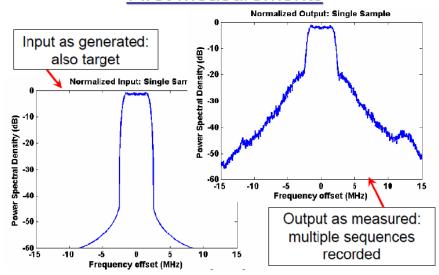
 $G(xI_n) = E(G_n(xI_n)|xI_n)$

Memory Mitigation DPD

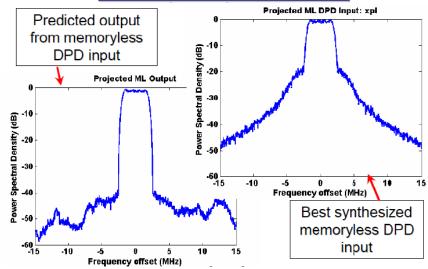
• DPD input: xppI(n)

Memoryless DPD

• DPD input: xpI(n)

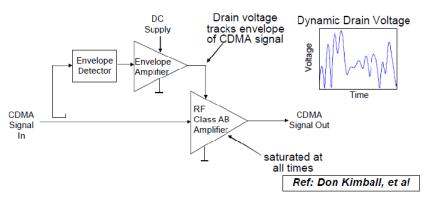

Projected output: yppIe(n)

Projected output: ypIe(n)


$$ypI_n \approx G_0 \cdot xI_n + Mem + Noise$$

$$yppI_n \approx G_0 \cdot xI_n + Noise$$

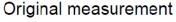
<u>DPD Projections</u> First Measurements



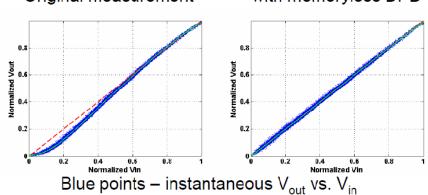
<u>DPD Projections</u> <u>Memoryless performance</u>

Envelope Tracking Technique

- Maximizes PA efficiency by keeping RF transistor saturated for all envelope amplitudes
- · Envelope Amplifier provides dynamic drain voltage

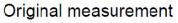


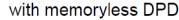
Philips Amplifier Results: LDMOS in ET System

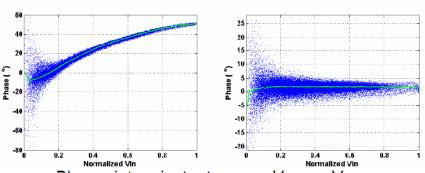

					-		
	Gain (dB)	Po (W)	DE (%)	PAE (%)	EVM (%)	ACLR1 (dBc)	ACLR2 (dBc)
Spec.		20 min			7	45	50
Before	14.6	20.85	35.7	35.3	45	-23	-40
After ML DPD	14.6	23.4	37.0	36.6	3.5	-42	-47
After Memory DPD	-	-	-	-	<1.4	-53	-57

LDMOS Class AB amplifier for WCDMA without ET: PAE= %

Memoryless Digital Predistortion






Purple line – gain target

Green line - expected value of gain

Memoryless Digital Predistortion (Phase)

Blue points – instantaneous V_{out} vs. V_{in}

Purple line – phase target

Green line – expected value of phase

Ensemble Input/Output **RMS Error**

- Perform an ensemble average over many measurements: *E*{.}
- Over all sample points: n
 - Normalize average power of both signals to unity: x_a , y_a
- Generate the rms difference between the normalized vectors

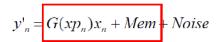
$$\underline{x}_{0} = E\{\underline{x}\}, \underline{y}_{0} = E\{\underline{y}\}$$

$$\underline{x}_{\alpha} = \frac{\sqrt{2} \cdot \underline{x}_{0}}{\sqrt{\sum_{n} (x_{0}^{2})}}$$

$$\underline{y}_{\alpha} = \frac{\sqrt{2} \cdot \underline{y}_{0}}{\sqrt{\sum_{n} (y_{0}^{2})}}$$

$$EVM_{rms} = \sqrt{\sum_{n} (|y_{\alpha} - x_{\alpha}|^{2})}$$

$$\Delta x_n^{(i-1)}$$


Contraction approximation

$$y'_n = G_n(\underline{xp}_n)xp_n$$

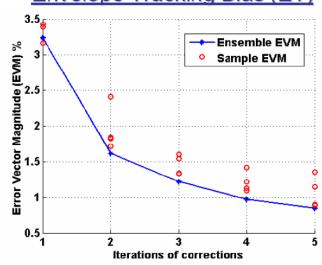
 $y'_n = G_n(xp_n)xp_n$ Input /Output Equation

$$G(xp_n) = E(G_n(\underline{xp}_n))$$

Memoryless gain:

Partitions of IO Equation

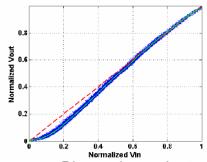
expected gain for a given x_n

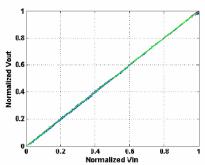

Mem: repeatable

Noise: random

 $xp_n^i = xp_n^{(i-1)} - \Delta x_n^{(i-1)}$ $\underline{xp_n}^i$ correction equation

$$\Delta x_n^{(i-1)} = \frac{\alpha \cdot e_c^{(i-1)}}{G_n(\underline{x}\underline{p}_n^{(i-1)})} \quad ?x \text{ adjustment equation}$$
Note: similarities to LMS algorithm


RF Power Amplifier with **Envelope Tracking Bias (ET)**



Predistortion with Memory Model

Original measurement

DPD including memory

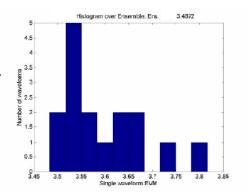
Blue points – instantaneous V_{out} vs. V_{in}

Purple line - gain target

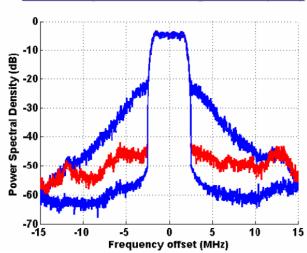
Green line - expected value of gain

Predistortion with Memory Model (Phase)

Original measurement DPD including memory


Blue points – instantaneous V_{out} vs. V_{in}

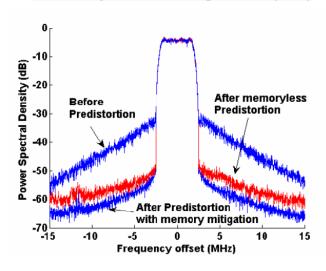
Purple line - phase target


Green line - expected value of phase

Typical RMS error histogram with Ensemble RMS error (N=16)

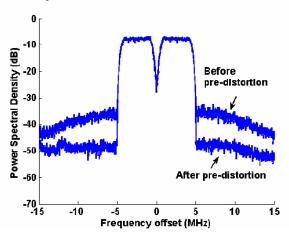
- Capture 16 samples
- Ensemble RMS error is typically at lower range.
- As E{e_cⁱ} becomes small, more ensemble members are needed to have confidence in the ensemble means and variances.

RF Power Amplifier with Envelope Tracking Bias (ET)

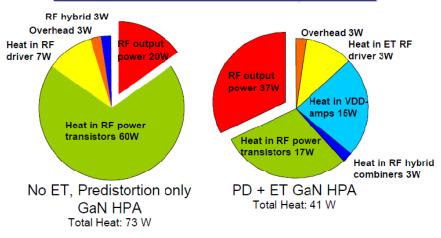


Nitronex Amplifier Results: GaN HFETs in ET System

	Gain (dB)	Po (W)	DE (%)	PAE (%)	EVM (%)	ACLR1 (dBc)	ACLR2 (dBc)
Spec.		20 min			7	45	50
Before	10.3	36.5	51.7	49.3	12.1	-32	-41
After ML DPD	10	37.2	53.4	50.7	1.74	-48	-53
After Memory DPD	-	-	-	-	0.7	-52	-58


GaN Class AB amplifier for WCDMA without ET: PAE=25%

RF Power Amplifier with Envelope Tracking Bias (ET)



NTX GaN: 2x WCDMA

Preliminary Results

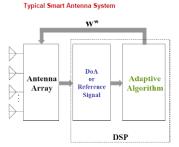
Heat Distribution Comparison

Junction temperatures for RF devices dramatically reduced due to both lower total heat and heat density

Summary

- Reviewed aspects of the relationship between waveform selection, behavioral modeling and the resulting impact on memory effect observation / modeling.
- Highlighted the Ensemble CCDF Variation plot to help qualify test and evaluation waveforms.
- Introduced a measurement based algorithm to estimate the limits of memoryless and memory digital predistortion.
- Highlighted two envelope tracking measurement examples were these techniques have been applied.

Smart Antenna and Signal Processing


Agenda

- · What is Smart Antenna
- Why are Smart Antenna Systems important
- Impact of Antenna Array Characteristics on :
 - 1. Mobile Ad-hoc Networks Throughput
 - 2. Communication Channel BER
- Summary

2009/7/17 Wireless Communication Engineering I 2009/7/17

Wireless Communication Engineering I

What is a Smart Antenna?

2009/7/17

Wireless Communication Engineering I 2009/7/17

Why are Smart Antenna Systems important?

2009/7/17

Wireless Communication Engineering I 2009/7/17

Wireless Communication Engineering I

Why are Smart Antenna Systems important?

 SA integrate radio intelligence (DSP) with array antenna technology to :

Enhance communication system performance, including:

Capacity (in urban area)

Range (in rural areas)

Improve link quality for transmission and reception, by:

Multi-path management Mitigation of fading

The previous are accomplished by:

· Beam steering:

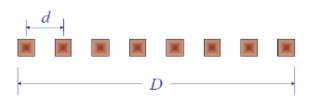
Placing beam maxima toward Signals Of Interest (SOI).

2. Null steering:

Placing beam minima, ideally nulls, toward interfering signals;

Signal Not Of Interest (SNOI).

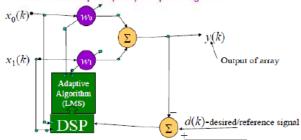
3. Spatially separate signals:


Allowing different users to share the same spectral and infrastructure resources (SDMA)

Beam-forming Linear Array

2009/7/17

Wireless Communication Engineering I


Linear Array Configuration

Wireless Communication

Engineering I

Least Mean Square (LMS) Temporal Algorithm

Based on the Weiner's solution:

 $\mathbf{w}_{k+1} = \mathbf{w}_k + 2\mu \mathbf{x}_k \left(d_k - \mathbf{x}_k^T \mathbf{w}_k \right)$ where $0 < \mu < \frac{1}{\lambda_m}$

 $R \implies$ auto-correlation matrix of input signal x_k

P \Rightarrow cross-correlation matrix between input signal \mathbf{x}_k and desired signal d_k

 $\lambda_{max} \Rightarrow$ largest eigenvalue of the auto-correlation matrix R

 μ \Rightarrow convergence factor/step-size parameter; determines convergence rate

2009/7/17

Wireless Communication Engineering I

Beam-forming Linear Array Example

Array Factor
LMS
55
8 linear array d = 0

Iterations: Geometry: SOI

Type: Algorithm:

8 linear array, $d = 0.5\lambda$ SOI 20° $w_{1,...,5} = 1.000$, $\beta = -61.56^{\circ}$ o

2009/7/17

Weights and Phases Comparison

	Uniform ((classical)	LMS $(i = 55)$		
Element	w	β(deg)	w	β(deg)	
1	1.0000	0.00	1.0000	0.00	
2	1.0000	-61.56	1.0000	-61.56	
3	1.0000	-123.12	1.0000	-123.13	
4	1.0000	-184.69	1.0000	-184.69	
5	1.0000	-246.25	1.0000	-246.25	
6	1.0000	-307.82	1.0000	-307.82	
7	1.0000	-369.38	1.0000	-369.38	
8	1.0000	-430.95	1.0000	-430.95	

Linear Array

N = 8

 $d = 0.5\lambda$

 $SOI = 20^{\circ}$

2009/7/17

Wireless Communication Engineering I 2009/7/17

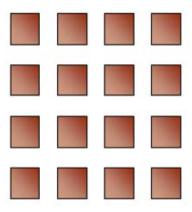
Wireless Communication Engineering I

Antenna Geometries for Simulations

Weights and Phases Comparison

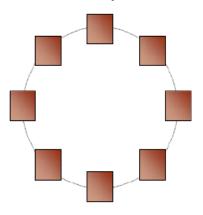
	LMS $(i = 81)$			
Element	W	β(deg)		
1	1.0000	-11.62		
2	0.8982	-57.05		
3	1.1384	-109.98		
4	1.3760	-178.77		
5	1.3760	-252.21		
6	1.1384	-321.01		
7	0.8982	-373.94		
8	1.0000	-419.37		

Linear Array


N=8

 $d = 0.5\lambda$

 $SOI = 20^{\circ}$


 $SNOI = 45^{\circ}$

Planar Array

2009/7/17

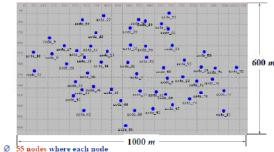
Circular Array

2009/7/17

Wireless Communication Engineering I

Mobile Ad-hoc Networks

2009/7/17


Wireless Communication Engineering I

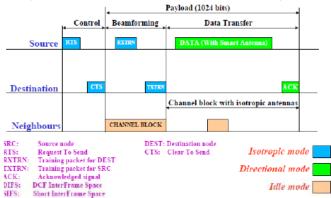
Mobile Ad-hoc Networks (MANETs)

- > Nodes move randomly, no fixed network infrastructure
 - · Future wireless networks may not be planned and may evolve in an ad-hoc fashion
- > Data packets are transferred in single hops

Network Model

- - Ø models traffic as a Poisson distribution
 - \emptyset mobility is modeled by changing position at random every two packets
- Ø OPNET Modeler/Radio Tool is used to simulate the network

Channel Access in MANETS


Network traffic and access is controlled by adopting a protocol. The protocol chosen for the simulations is the:

Medium Access Control (MAC)

2009/7/17

Wireless Communication Engineering I

The MAC Protocol (Based on IEEE 802.11 Standard for WLANs)

2009/7/17

Wireless Communication Engineering I

Simulation Parameters for MAC

Packet lengths used:

g	23 413 4411	
DIFS	0.023 L	Î
SIFS	0.004 L	
RTS	0.011 L	Control Packets
CTS	0.011 L	
ACK	0.011 L	ļ
TXTRN	Variable	Beamforming Packets
RXTRN	Variable	Dealinorming Packets
DATA	L -	→ Payload (Data)

6% Variable L = 100%

Control Beamforming L = Payload (Data)

Network Through-put Simulations

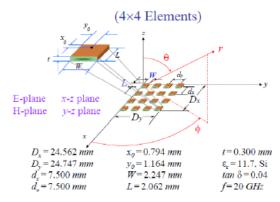
Network Though-put Simulations

- ➤ Array Size (4×4 vs. 8×8)
- > Array Distribution (Uniform vs. Tschebyscheff)
- ➤ Adaptive vs. Nonadaptive Array
- **▶** Beamforming Training Time

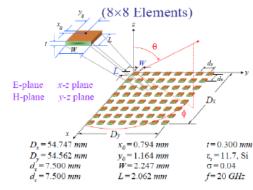
2009/7/17

Wireless Communication Engineering I

Network Through-put Simulations

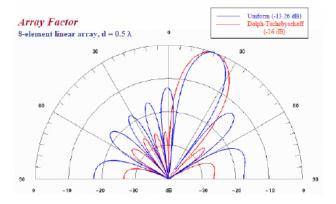

- Ø Array Size (4×4 vs. 8×8)
- Ø Array Distribution

(Uniform vs. Tschebyscheff)


2009/7/17

Wireless Communication Engineering I

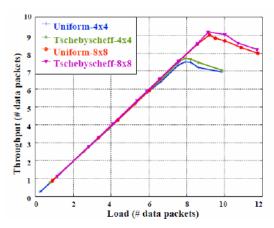
Planar Array Configuration



Planar Array Configuration

2009/7/17 Wireless Communication Engineering I

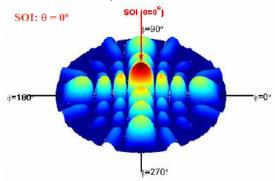
Array Design

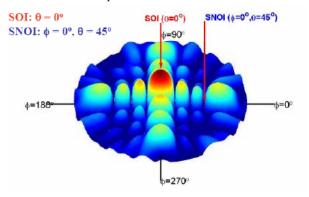

2009/7/17

Wireless Communication Engineering I

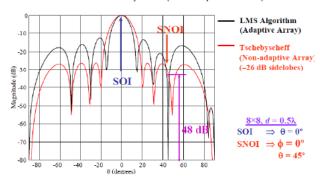
Network Through-put Simulations

· Adaptive vs. Non-adaptive Array

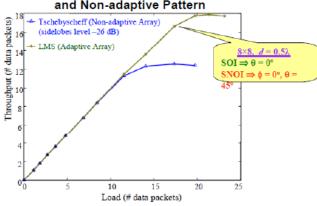

Through-put for Different Antenna Patterns


2009/7/17

Wireless Communication Engineering I

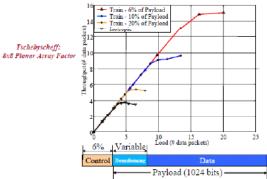

Non-adaptive Pattern

Adaptive Pattern


2009/7/17 Wireless Communication Engineering I LMS Algorithm (Adaptive Pattern) vs. Tschebyscheff (Non-adaptive Pattern)

2009/7/17

Wireless Communication Engineering I


Through-put for adaptive Pattern and Non-adaptive Pattern

Network Throughput Simulations

Beam-forming Training Time

Through-put for Different Training/Beam-forming Periods

2009/7/17

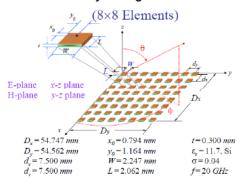
Wireless Communication Engineering I

Summary

Based on the Network Simulations, MANETs employing smart antennas can achieve higher capacity, as measured by *throughput*, by the using the following antenna array designs guidelines:

- Ø Larger planar arrays (in this project: 8 x 8 vs. 4 x 4)
- Ø Lower sidelobes (in this project: -26 dB vs. -13.26 dB)
- Ø Fully adaptive array with deep nulls/minima towards the SNOIs
- Ø Short beamforming training times

2009/7/17


Wireless Communication Engineering I

Communication System BER

Binary Phase Shift Keying (BPSK)
vs.
Trellis Coded Modulation (TCM)
vs.
Multipath/Fading

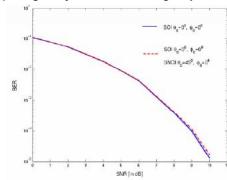
Signals Corrupted with Additive White Gaussian Noise Channel (AWGN) Binary Phase Shift Keying (BPSK) over AWGN

Planar Array Configuration

Wireless Communication Engineering I

SOI: $\phi = 0^{\circ}, \theta = 0^{\circ}$ SNOI: $\phi = 0^{\circ}, \theta = 45^{\circ}$ (8 x 8 Planar Array)

Workshop: Reconfigurable and Smart Antennas IMS

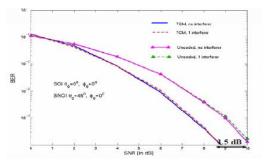

Signal used for Antenna Pattern Adaptation

	sc	ΟΙ	SNOI		
	ϕ_o	θ_o	ϕ_o	θ_o	
Case 1*	0°	0°	0°	45°	
Case 2	45°	30°	45°	60°	

2009/7/17

Wireless Communication Engineering I

BER over Binary/Uncoded AWGN Channel (using 60 symbols for training sequence)


2009/7/17

Wireless Communication Engineering I

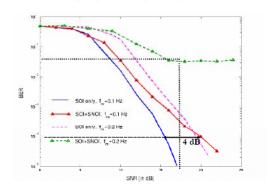
2009/7/17

Trellis Code QPSK Modulation over AWGN Channel

BER over AWGN Channel (Uncoded/Binary vs. Trellis Code Mod.)

2009/7/17

Wireless Communication Engineering I 2009/7/17

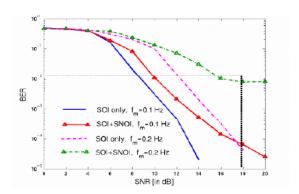

Wireless Communication Engineering I

Rayleigh Fading Channel

- BER over Rayleigh fading channel with Doppler spreads of $f_m = 0.1$ Hz ($f_m T = 0.001$) and $f_m = 0.2$ Hz ($f_m T = 0.002$)
- The length of the training symbol is 60 symbols and is transmitted periodically every data sequence of length 940 symbols.

(Symbol duration: T = 10 ms)

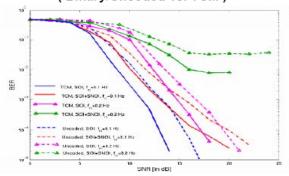
Rayleigh Fading-Binary/Uncoded Channel


- BER for trellis coded QPSK modulation over Rayleigh fading channel with Doppler spreads of $f_m = 0.1$ Hz ($f_m T = 0.001$) and $f_m = 0.2$ Hz ($f_m T = 0.002$) for both cases.
- The length of the training symbol is 60 symbols and is transmitted periodically every data sequence of length 940 symbols.

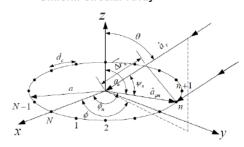
(Symbol duration: T = 10 ms)

2009/7/17

Wireless Communication Engineering I


Rayleigh Fading Coded Channel (TCM)

2009/7/17


Wireless Communication Engineering I

BER over Rayleigh Fading Channel (Binary/Uncoded vs. TCM)

Uniform Circular Arrays (UCAs)

Uniform Circular Array

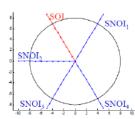
2009/7/17

Wireless Communication Engineering I

Communication System BER

Binary Phase Shift Keying (BPSK) vs. Trellis Coded Modulation (TCM)

Signals Corrupted with Additive White Gaussian Noise Channel (AWGN)


2009/7/17

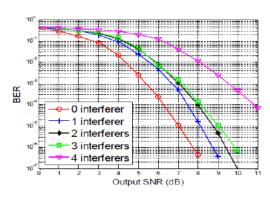
Wireless Communication Engineering I

Simulation Environment of UCA

Equal power signals in the same azimuth plane with AWGN

$$N = 8$$
, $d_c = \lambda/2$, $a = 2\lambda/\pi$

	SOI	θ=90°	φ=120°
	SNOI ₁	θ=90°	φ=60°
	SNOI ₂	θ=90*	φ=180*
	SNOI ₃	θ=90°	φ=240°
_	SNOI ₄	θ=90°	φ=300°


Binary Phase Shift Keying

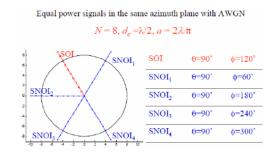
2009/7/17

Wireless Communication Engineering I 2009/7/17

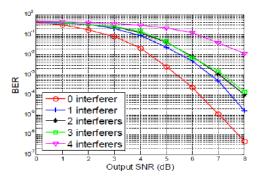
Trellis Code Modulation

2009/7/17

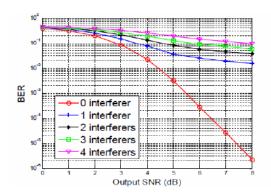
Wireless Communication Engineering I


Trellis Code Modulation (TCM)

Well Separated SNOIs vs.
Random SNOIs


2009/7/17

Wireless Communication Engineering I


Simulation Environment of UCA

Well-separated Signals

Random SNOIs (5000 simulations)

2009/7/17

Wireless Communication Engineering I

Conclusion

By incorporating appropriate adaptive antenna array designs, and digital signal processing and communication algorithms,

Smart Antenna Systems (SAS) can:

- ➤ Increase network capacity/throughput
- ➤ Decrease Communication channel *Bit-Error-Rate* (*BER*)

2009/7/17