Agenda • Review of Filter & Signal Processing • Linear & Non-linear Signal Processing Filtering: Signal Conditioning • Filter Design & Synthesis Gaussian Filter and Processing • Nyquist Filter • Partial Response Filter 2009/06/19 Wireless Communication Engineering I • Deterministic: **Review of Filter & Signal Processing** How to realize a filter circuit which has a desired frequency characteristics 1) Filter = Hardware and/or Algorithm - Linear Signal Processing • Noise & Interference Suppression 2) Stochastic vs. Deterministic • Inter-Symbol Interference Problem (Negative) Remove \rightarrow Nyquist Filter (1920's) Nyquist Criteria (Positive) Utilize \rightarrow Partial Response Filter (1960's) Spectrum Shaping

2

2009/06/19

- Non-Linear Signal Processing
 - Envelope Detection (Diode + LPF) : No phase Information
 - PLL (Phase Comparator + LPF + VCO) : Frequency Synthesizer
 - Pre-emphasis in FM System

PLL (Phase Lock Loop) Principle

- Reference Frequency by Stable Crystal Oscillator
- Pre-scaler
- VCO (Voltage Controlled Oscillator)

Low-pass prototype specification

Pass-bandStop-bandButterworthFlatFlatChebyshevEqual-RippleFlatInv.FlatEqual-RippleChebyshevEqual-RippleEqual-RippleEllipticEqual-RippleEqual-Ripple

2009/06/19

• Maximally Flat (Butterworth)

$$\left|S_{12}(j\omega)\right|^2 = \frac{1}{1 + \varepsilon^2 \omega^{2n}}$$

• Equal Ripple (Chebyshev)

2009/06/19

$$\left|S_{12}(j\omega)\right|^{2} = \frac{1}{1 + \varepsilon^{2} T_{n}^{2}(\omega)}$$

 $T_n(\omega)$: *n* - th order Chebyshev Polynomial ε : Ripple Level

Wireless Communication Engineering I

Elliptic Filter

• Sharp Transition

2009/06/19

- Equal-Ripple Characteristics both in PB and SB
- Elliptic function is used for the design of Filter Transfer Function

Wireless Communication Engineering I

Design Example

 LA=50dB, LR=20dB, ωs/ωp=2: Elliptic Filter n=5 Chebyshev Filter n=7 Maximally Flat Filter n=12

2009/06/19

Filter Synthesis

$$|S_{21}(j\omega)|^{2} = \frac{1}{1 + \varepsilon^{2}\omega^{2n}}$$
$$|S_{11}(j\omega)|^{2} = 1 - |S_{21}(j\omega)|^{2} = \frac{\varepsilon^{2}\omega^{2n}}{1 + \varepsilon^{2}\omega^{2n}} = S_{11}(s)S_{11}(-s)$$

[Factorization Technique]

 $s = j\omega$

2009/06/19

Continued Faction Technique

2009/06/19

LC-Ladder Circuit with *n*-elements

Wireless Communication Engineering I

Parallel to Serial Transform by using Impedance Inverters

Wireless Communication Engineering I

2009/06/19

24

 Stochastics: How to select signal and noise <i>Estimation and Prediction Theory</i> - Gauss (1795): Least Square Mean Concept → Astronomy (Prediction of Satellite Orbit), → Gauss Distribution 	 Wiener and Kolmogorov (1940's): Linear Prediction for Stationary Stochastic Process using 2-nd order stastitics (Correlation Matrix) Generalized Harmonic Analysis (Stochastic Theory + Fourier Analysis) Wiener-Hopf Integral Equation (Semi-infinite Singular Boundary Value Problem) Communication + Control ⇒ Cybernetics 		
2009/06/19 Wireless Communication Engineering I 32	2009/06/19 Wireless Communication Engineering I 33		
Wiener Filter based on Correlation Function	– Kalman (1960's):		
x(t) = s(t) + n(t) $y(t) = \int_0^\infty x(t - \tau) h(\tau) d\tau$	Non-stationary Process Prediction by using Kalman algorithm		
$\operatorname{Min} E\left[\left y(t)-s(t)\right ^{2}\right]$ $\rightarrow \operatorname{Wiener-Hopf Equation} \text{ for } h(\tau)$ $\int_{0}^{\infty} \left[R_{ss}(\tau-\tau')+R_{nn}(\tau-\tau')\right]h(\tau')d\tau'=R_{ss}(\tau)$ $R_{ss}=Signal-Auto-Correlation$	State Space Approach, Linear System Theory, Control Theory, Controlability, Observability, Optimum Regulator, Optimum Filter, Stability, etc.		
$R_{nn} = Noise - Auto - Correlation$ 2009/06/19 Wireless Communication Engineering I 34	2009/06/19 Wireless Communication Engineering I 35		

– Godard (1974):

Learning Theory, Adaptive Equalizer for Wired Transmission Unknown state variables = Transmission Characteristics

- RLS (Recursive LSM) (1990'):
 - → Inter-symbol Interefence Canceller, Multi-user Detection for Wireless Communication

Wireless Communication Engineering I

Frequency Characterstics and Impulse Response

• Transfer Function of Linear Filter:

[Linearity + Time-Invariance]

 \rightarrow Impulse response function h(t) is enough for system description.

2009/06/19

Wireless Communication Engineering I

37

Output signal y(t) is given by a convolution of Input signal x(t) and Impulse response function h(t)

$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$

Linear System

- Linear Time-Invariant : Impulse Function
- Linear Periodic-variant : Multi-rate System
- Application : Band aggregation, Rate Transform

2009/06/19

- \rightarrow Exponential time function exp(*at*) = eigen-function
- \rightarrow Fourier Analysis

Y(f) = X(f)H(f)

 $\rightarrow \text{Transfer Function } H(f)$ $H(f) = \int_{-\infty}^{\infty} h(t) \exp(-j2\pi ft) dt$

|H(f)|: Amplitude Characteristics $\angle H(f)$: Phase Characteristics $-\partial \angle H(f)/\partial f$: Delay - time Characterstics

2009/06/19	Wireless Communication Engineering I	40	2009/06/19	Wireless Communication Engineering I	41
 Ideal Fil Causalit – Ideal I Cutoff 	Iter and Physical Realizability: y Low Pass Filter: Flat Amplitude, Sha C, Linear Phase $f(f) = A \cdot \operatorname{rect}\left(\frac{f}{2W}\right) \exp(-j2\pi f\tau)$	arp)	– Impuls zero-cr	e Response : sinc function, equal- ossing $h(t) = 2AW \frac{\sin[2\pi W(t-\tau)]}{2\pi W(t-\tau)}$	-distance
where	$\operatorname{rect}(x) = \begin{cases} 1 & \text{for} x \le \frac{1}{2} \\ 0 & \text{for} x > \frac{1}{2} \end{cases}$		\Rightarrow Nor	o-causal !	

W: Bandwidth τ : delay time Wireless Communication Engineering I

2009/06/19

- Uncertainty Principle: $\Delta f \cdot \Delta t \ge 1/4\pi$

Impulse function $(\triangle t \rightarrow 0)$ has flat spectrum $(\triangle f \rightarrow \infty)$ Sinusoidal function $(\triangle f \rightarrow 0)$ is widely spread $(\triangle t \rightarrow \infty)$ (cf. In Quantum Physics, $\triangle E \cdot \triangle t \ge h/4\pi$, *E*: Energy, *h*: Planck constant) Gaussian function is optimum with respect to the product of time spread and frequency spread; $\triangle t \cdot \triangle f$. – Finiteness of system:

 \rightarrow Transfer function is a Rational function of f

- Causality $\Leftrightarrow h(t) = 0$ for t < 0 \Leftrightarrow Wiener-Palay Condition

2009/06/19	Wireless Communication Engineering I	44	2009/06/19	Wireless Communication Engineering I	45

 \rightarrow Real part, R(f)

 \leftarrow Hilbert Transform \rightarrow Imaginary Part, X(f)

$$R(f) = -\frac{2}{\pi} \int_0^\infty \frac{u}{u^2 - f^2} X(u) \, du + R(\infty)$$
$$X(f) = \frac{2}{\pi} \int_0^\infty \frac{f}{u^2 - f^2} R(u) \, du$$

- For Minimum Phase System:

Amplitude Characteristics |H(f)| determines Phase Characteristics $\angle H(f)$ But when delayed waves are larger than the first arriving wave in the multi-path environment, it becomes Non-minimum Phase.

Gaussian Filter

- Transfer Function: $H(f) = \exp(-(f/f_0)^2)$
- Impulse Response: $h(t) = f_0 \sqrt{\pi} \exp(-(\pi f_0 t)^2)$
- Step Response: $s(t) = 1 \frac{1}{2} \operatorname{erfc}(\pi f_0 t)$ where $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} \exp(-u^2) du$: complementary error function
- Mono pulse (*T*) response:

$$g(t) = s(t) - s(t - T)$$

• Roll-off Filter

Roll-off Response

2009/06/19

$$= \frac{1}{2} \left[\operatorname{erfc}(\pi f_0 t(\frac{t}{T} - 1)) - \operatorname{erfc}(\pi f_0 t(\frac{t}{T})) \right]$$

2009/06/19

```
Wireless Communication Engineering I
```

• For Random pulse sequence $\{a_n\}$,

$$g_r(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT)$$

- Eye pattern is determined by f_0T $f_0T \rightarrow$ large, Good eye pattern
- Bessel Filter of 5-th order \approx Gaussian Filter (Maximally Flat in delay characteristics)

Partial Response Filter

Controlled Interference

- Class of Partial Response Filter
 Partial Response Filter: Binary sequence →
 Multi-valued sequence → Spectrum Shaping
 Partial Response Filter:
 FIR Filter with Integer coefficient
- Similar concept: Morrison-Harashima Precoding in Dirty-paper Coding

Wireless Communication Engineering I

Class	c_0, c_1, c_2, c_3, c_4	$H(f), f \le \frac{1}{2T}$	Impulse response
1	1, 1	$2T\cos\pi fT$	$\frac{4}{\pi} \frac{\cos(\pi tT)}{1-4(t/T)^2}$
1	1, -1	$-2T\sin\pi T$	$\frac{\frac{8t/T}{\pi}}{\frac{\cos(\pi T)}{4(t/T)^2 - 1}}$
2	1, 2, 1	$4T\cos^2\pi fT$	$\frac{2}{\pi t/T} \frac{\sin(\pi T)}{1-(t/T)^2}$
3	2, 1, -1	$T(1+\cos 2\pi fT+3j\sin 2\pi fT)$	$\frac{3t/T-1}{\pi t/T} \frac{\sin(\pi T)}{(t/T)^2 - 1}$
4	1, 0, -1	$j2T\sin\pi fT$	$\frac{2}{\pi} \frac{\sin(\pi T)}{(t/T)^2 - 1}$
5	1, 0, 2, 0, 1	$-4T\sin^2 2\pi fT$	$\frac{8}{\pi t/T} \frac{\sin(\pi t/T)}{(t/T)^2 - 4}$

2009/06/19

