
Filtering: Signal Conditioning
and Processing

A dAgenda
• Review of Filter & Signal Processing
• Linear & Non-linear Signal ProcessingLinear & Non linear Signal Processing
• Filter Design & Synthesis 
• Gaussian Filter
• Nyquist FilterNyquist Filter 
• Partial Response Filter 

2009/06/19 Wireless Communication Engineering I 1

R i f Filt & Si l P iReview of Filter & Signal Processing

1) Filter = Hardware and/or Algorithm

2) Stochastic vs. Deterministic
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• Deterministic: 

How to realize a filter circuit which has a desired 
f h t i tifrequency characteristics
– Linear Signal Processing

• Noise & Interference SuppressionNoise & Interference Suppression

• Inter-Symbol Interference Problem
↓↓

(Negative) Remove → Nyquist Filter (1920's)
Nyquist Criteria

(Positive) Utilize → Partial Response Filter (1960's)
Spectrum Shaping
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– Non-Linear Signal Processing
• Envelope Detection (Diode + LPF) : No phase 

Information
• PLL (Phase Comparator + LPF + VCO) : 

Frequency SynthesizerFrequency Synthesizer
• Pre-emphasis in FM System
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P (Ph k ) P i i lPLL (Phase Lock Loop) Principle

• Reference Frequency by Stable Crystal Oscillator 
• Pre-scaler 
• VCO ( Voltage Controlled Oscillator )VCO ( Vo tage Co t o ed Osc ato )
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Principle of ADPLL ( All- Digital PLL)

• Digital Loop Filter 
• Digital Controlled Oscillator 
• TDC ( Time-to-Digital Converter )C ( e to g ta Co ve te )
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History of Filter Design

Design Theory: Butterworth (1930's)Design Theory: Butterworth (1930 s) 
Chebyshev (1950's), 
Elliptic (1960's)Elliptic (1960 s)

Hardware: LCR, Active, Digital, Ceramic, 
SAW, SC, Waveguide
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D l d FiltDual-mode Filter
In-Line （Longitudinal) Type

(a) Filter Structure (b) Equivalent Circuit
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Multiplexer/Demultiplexerp p

(a) Multiplexer（TE111) (b) Demultiplexer（TE113)
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Design Procedure

( ) 2ωjs

Design Procedure

( )1 2 ωjs

A

0 cω ω

Ideal low-pass prototype response
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Low-pass prototype specification
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Pass-band Stop-bandp

Butterworth Flat Flat

Chebyshev Equal-Ripple Flat

Inv. 
Chebyshev

Flat Equal-Ripple
Chebyshev

Elliptic Equal-Ripple Equal-Ripple
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• Maximally Flat (Butterworth)Maximally Flat (Butterworth)
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Level Ripple:ε
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Maximally flat response
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Chebyshev response
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Inverse Chebyshev response
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Elli i FilElliptic Filter

• Sharp Transition 
E l Ri l Ch t i ti b th i PB• Equal-Ripple Characteristics both in PB 
and SB

• Elliptic function is used for the design of 
Filter Transfer Function
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D i E lDesign Example
• LA=50dB, LR=20dB, ωs/ωp=２：

Elliptic Filter n=5Elliptic Filter             n 5
Chebyshev Filter       n=7
Maximally Flat Filter n=12
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Filt S th iFilter Synthesis
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Continued Faction TechniqueContinued Faction Technique
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LC L dd Ci it ith l tLC-Ladder Circuit with n-elements
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Parallel to Serial Transform byParallel to Serial Transform by 
using Impedance Inverters

Y.. II .. II

YZZ 2
0=
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I d I tImpedance Inverters
T i i Li (P i )4λ• Transmission Lines (Passive)

• Operational Amplifiers (Active)
4λ
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F T f tiFrequency Transformation
0

0 S
SS ω
ω

+→

BPFLPF
0 Sω

2009/06/19 Wireless Communication Engineering I 30

1
S

S →

HPFLPF
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• Stochastics:Stochastics: 
How to select signal and noise
Estimation and Prediction Theory
– Gauss (1795): ( )

Least Square Mean Concept 
Astronomy (Prediction of Satellite Orbit), y ( ),
→ Gauss Distribution
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– Wiener and Kolmogorov (1940's): g ( )

Linear Prediction for Stationary Stochasticy
Process using 2-nd order stastitics (Correlation 
Matrix))

Generalized Harmonic Analysis y
(Stochastic Theory + Fourier Analysis)

Wiener-Hopf Integral Equation 
(Semi-infinite Singular Boundary Value Problem)
Communication + Control ⇒ Cybernetics
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Wiener Filter based on Correlation Function

( ) ( ) ( )+= tntstx

Wiener Filter based on Correlation Function 
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nCorrelatioAutoNoiseRnn =

– Kalman (1960's):Kalman (1960 s): 

Non stationary Process Prediction by using KalmanNon-stationary Process Prediction by using Kalman 
algorithm

State Space Approach, Linear System Theory, 
C t l Th C t l bilit Ob bilitControl Theory, Controlability, Observability, 
Optimum Regulator, Optimum Filter, Stability, etc.
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– Godard (1974):Godard (1974): 

Learning Theory Adaptive Equalizer for WiredLearning Theory, Adaptive Equalizer for Wired 
Transmission 
Unknown state variables = TransmissionUnknown state variables = Transmission 
Characteristics
RLS (R i LSM) (1990')– RLS (Recursive LSM) (1990'): 

→ Inter-symbol Interefence Canceller, Multi-user 
Detection for Wireless Communication
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Frequency Characterstics andFrequency Characterstics and 
Impulse Responsep p

• Transfer Function of Linear Filter:• Transfer Function of Linear Filter: 

[Li it + Ti I i ][Linearity + Time-Invariance]

→ Impulse response function h(t) is 
enough for system description.
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Output signal y(t) is given by a convolution
of Input signal x(t) and Impulse responseof Input signal x(t) and Impulse response
function h(t)

( ) ( ) ( ) τττ dthxty ∫
∞

∞
−= ∫ ∞−
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Li S tLinear System
• Linear Time-Invariant ： Impulse Function
• Linear Periodic-variant ：Multi-rate SystemLinear Periodic variant ：Multi rate System
• Application ：Band aggregation, Rate 

T fTransform
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→ Exponential time function→ Exponential time function 
exp(at) =  eigen-function

→ Fourier Analysis Fourier Analysis

( ) ( ) ( )fHfXfY =( ) ( ) ( )fHfXfY =
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T f F ti H(f)→ Transfer Function H(f)

( ) ( ) ( ) dtftjthfH ∫
∞

−= π2exp( ) ( ) ( ) dtftjthfH ∫ ∞−
= π2exp

( ) sticsCharacteriAmplitude:fH ( )
( ) sticsCharacteri Phase :

sticsCharacteri Amplitude :
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fH

∠ ( )
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f
∂∂∠−
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• Ideal Filter and Physical Realizability:Ideal Filter and Physical Realizability: 
Causality

Id l L P Fil Fl A li d Sh– Ideal Low Pass Filter: Flat Amplitude, Sharp 
Cutoff,  Linear Phase
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W: Bandwidth τ : delay time
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W: Bandwidth τ : delay time

– Impulse Response ： sinc function, equal-distance 
zero-crossing

( ) ( )[ ]
( )

τπ −
=

W
tWAWth

2
2sin2( ) ( )τπ −tW2

⇒ Non-causal !⇒ Non causal !
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U t i t P i i l 41≥f △△– Uncertainty Principle: π41≥⋅ tf △△

Impulse function                has flat spectrum 
Sinusoidal function                  is widely 

)0( →t△

)( ∞→f△ )0( →f△
spread 
(cf. In Quantum Physics,                        , E: Energy, 

)( f )( f
)( ∞→t△

π4htE ≥⋅△△
h: Planck constant)

Gaussian function is optimum with respect to the 
product of time spread and frequency 
spread;             .ft △△ ⋅ f
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– Finiteness of system:
→ Transfer function is a Rational function of  f

– Causality ⇔ h(t) = 0 for t < 0
⇔ Wi P l C diti⇔ Wiener-Palay Condition
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R l t R(f)→ Real part, R(f)
← Hilbert Transform → Imaginary Part, X(f)
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– For Minimum Phase System:For Minimum Phase System: 

Amplitude Characteristics determines Phase)( fHAmplitude Characteristics            determines Phase 
Characteristics 
But when delayed waves are larger than the first

)( fH
)( fH∠

But when delayed waves are larger than the first 
arriving wave in the multi-path environment, 
it becomes Non-minimum Phaseit becomes Non-minimum Phase.
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G i FiltGaussian Filter
2• Transfer Function: 

• Impulse Response:
))(exp()( 2

0fffH −=
))(exp()( 2

00 tffth ππ −=Impulse Response: 
• Step Response:

h
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• Mono pulse (T) response:
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2 TT

• For Random pulse sequence {a }For Random pulse sequence {an},

∑∞
−= nTtgatg )()(

• Eye pattern is determined by f T

∑ −∞=n nr nTtgatg )()(

• Eye pattern is determined by f0T
f0T → large, Good eye pattern

• Bessel Filter of 5-th order    Gaussian Filter
(Maximally Flat in delay characteristics)

≈
(Maximally Flat in delay characteristics)
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N i t FiltNyquist Filter
• No interference condition at sampling time
• Roll-off FilterRoll off Filter
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• Roll-off Responsep

( ) ( ) ( )
Tt

Tt
Tt

Tttr α
α

π
π cossin= )10(factor  off-roll: ≤≤αα
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Frequency responseFrequency response

2009/06/19 Wireless Communication Engineering I 51



Time response
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P ti l R FiltPartial Response Filter
Controlled Interference

• Class of Partial Response FilterClass of Partial Response Filter
Partial Response Filter: Binary sequence → 
Multi valued sequence → Spectrum ShapingMulti-valued sequence → Spectrum Shaping
Partial Response Filter: 
FIR Fil i h I ffi iFIR Filter with Integer coefficient

• Similar concept: Morrison-Harashima p
Precoding in Dirty-paper Coding
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Duo-binary signaling scheme
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Impulse response of the duo-binary conversion filter
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• Error Propagation and Pre-coder
Full response system    : No error propagationp y p p g
Partial response system: Error propagation
Pre-coder is necessary for prevention of errorPre coder is necessary for prevention of error 
propagation
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Pre-coder in TXPre-coder in TX
Source information {an} → 
P d d i f ti { }Pre-coded information {sn}
Digital calculation (Logical calculation)

( )2mod∑ −⋅=
k

inin scs ( )
0
∑
=i

inin
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Pre coded information {s }Pre-coded information {sn} → 
Partial response information {gn}
A l l l ti (Ph i l l l ti )Analog calculation (Physical calculation)

∑ ⋅=
k

ii scg

Decoding in RX

∑
=

−
i

inin scg
0

Decoding in RX

( )2modga =

Apparently error propagation is eliminated

( )2modnn ga =

Apparently, error propagation is eliminated.
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PR-VA (Partial Response & Viterbi Algorithm) is 
a most powerful recording method in magnetic p g g
recording.
Convolutional Code also utilizes a partialConvolutional Code also utilizes a partial 
response  in the codeword
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encoder2ticnonsystema1
== mR encoder 2tic,nonsystema ,

2
== mR



code 2,
2
1for  diagramn  transitioState == mR
2
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