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Review of Filter & Signal Processing

1) Filter = Hardware and/or Algorithm

2) Stochastic vs. Deterministic
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e Deterministic:

How to realize a filter circuit which has a desired
frequency characteristics

— Linear Signal Processing
* Noise & Interference Suppression

¢ Inter-Symbol Interference Problem

(Negative) Relmove — Nyquist Filter (1920's)
Nyquist Criteria
(Positive) Utilize — Partial Response Filter (1960's)
Spectrum Shaping

2009/06/19 Wireless Communication Engineering I




— Non-Linear Signal Processing

* Envelope Detection (Diode + LPF) : No phase
Information

* PLL (Phase Comparator + LPF + VCO) :
Frequency Synthesizer

¢ Pre-emphasis in FM System
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PLL (Phase Lock Loop) Principle

» Reference Frequency by Stable Crystal Oscillator
* Pre-scaler
* VCO ( Voltage Controlled Oscillator )
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Principle of ADPLL (All- Digital PLL)

 Digital Loop Filter
 Digital Controlled Oscillator
* TDC ( Time-to-Digital Converter )
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Phase Measurements (pnise_2)
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History of Filter Design

Design Theory: Butterworth (1930's)

Chebyshev (1950's),
Elliptic (1960's)

Hardware: LCR, Active, Digital, Ceramic,
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SAW, SC, Waveguide
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Dual-mode Filter

In-Line (Longitudinal) Type
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(a) Filter Structure (b) Equivalent Circuit
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Multiplexer/Demultiplexer

Design Procedure
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(a) Multiplexer (TE,;;) (b) Demultiplexer (TE,;3)
Ideal low-pass prototype response
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(i) Pass-band Stop-band
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Low-pass prototype specification
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Butterworth Flat Flat
Chebyshev | Equal-Ripple Flat

Inv. Flat Equal-Ripple
Chebyshev

Elliptic Equal-Ripple | Equal-Ripple
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» Maximally Flat (Butterworth)
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Elliptic Filter

* Sharp Transition
* Equal-Ripple Characteristics both in PB
and SB

+ Elliptic function is used for the design of
Filter Transfer Function
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Design Example

 LA=50dB, LR=20dB, ws/op=2:
Elliptic Filter n=>5
Chebyshev Filter  n=7
Maximally Flat Filter n=12
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Filter Synthesis
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2009/06/19 Wireless Communication Engineering I 24

Z, (S) =1 S“(S)

1+5S,,(s)
Continued Faction Technique
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LC-Ladder Circuit with n-elements
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Parallel to Serial Transform by
using Impedance Inverters
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Impedance Inverters

* 1/4 Transmission Lines (Passive)
* Operational Amplifiers (Active)
I I
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Frequency Transformation
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» Stochastics:

How to select signal and noise
Estimation and Prediction Theory
— Gauss (1795):

Least Square Mean Concept =

Astronomy (Prediction of Satellite Orbit),
— Gauss Distribution
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— Wiener and Kolmogorov (1940's):

Linear Prediction for Stationary Stochastic

Process using 2-nd order stastitics (Correlation
Matrix)

Generalized Harmonic Analysis
(Stochastic Theory + Fourier Analysis)

Wiener-Hopf Integral Equation
(Semi-infinite Singular Boundary Value Problem)
Communication + Control = Cybernetics
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Wiener Filter based on Correlation Function
x(t)=s(t)+nlt)
y(t)= |, xlt-2)n(c)dz
Min E|[y(t)-s(t) |

— | Wiener-Hopf Equation | for h(r)

LOO [Rss (T — z")+ R, (T - z")] h(r') dz' =R, (r)

R, = Signal — Auto—Correlation

R, = Noise — Auto— Correlation
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— Kalman (1960's):

Non-stationary Process Prediction by using Kalman
algorithm

State Space Approach, Linear System Theory,
Control Theory, Controlability, Observability,
Optimum Regulator, Optimum Filter, Stability, etc.
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— Godard (1974):

Learning Theory, Adaptive Equalizer for Wired
Transmission

Unknown state variables = Transmission
Characteristics

— RLS (Recursive LSM) (1990"):

— Inter-symbol Interefence Canceller, Multi-user
Detection for Wireless Communication
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Frequency Characterstics and
Impulse Response

e Transfer Function of Linear Filter:
[Linearity + Time-Invariance]

— Impulse response function h(t) is
enough for system description.
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Output signal y(t) is given by a convolution
of Input signal X(t) and Impulse response
function h(t)
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Linear System

* Linear Time-Invariant : Impulse Function
* Linear Periodic-variant :Multi-rate System

» Application :Band aggregation, Rate
Transform
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— Exponential time function
exp(at) = eigen-function

— Fourier Analysis

Y(f)=X(f)H(f)
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— Transfer Function H(f)
H(f)= f h(t)exp(~ j2ft)dt
‘ H ( f )‘ : Amplitude Characteristics

2 H(f):Phase Characteristics
— 0/ H(f)/of : Delay - time Characterstics

41
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* Ideal Filter and Physical Realizability:

Causality
— Ideal Low Pass Filter: Flat Amplitude, Sharp

Cutoff, Linear Phase

H(F)= A-rect(ﬁjexp(— i2447)

where
1 for |x<%
x> 4

rect(x) = {0 for

W: Bandwidth 7 : delay time
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— Impulse Response : sinc function, equal-distance
Zero-crossing

sin[22W (t -7 )]
272W (1-7)

h(t)=2AW

= Non-causal !
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— Uncertainty Principle: Af.At>1/4z

Impulse function (At — 0) has flat spectrum
(AT —o0) Sinusoidal function (Af —0) is widely
spread (At —o0)

(cf. In Quantum Physics, AE-At >h/4x, E: Energy,
h: Planck constant)

Gaussian function is optimum with respect to the
product of time spread and frequency
spread; At-Af.
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— Finiteness of system:

— Transfer function is a Rational function of f
— Causality < h(t)=0 fort<0

< Wiener-Palay Condition

df <

- [HCE)
s

—e 1+
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— Real part, R(f)
«— Hilbert Transform — Imaginary Part, X(f)
2 U

R(f)z—; T X (u)du +R(e)
2o f
X(f):;'[o 02— 2 R(u)du
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— For Minimum Phase System:

Amplitude Characteristics ‘H (f )‘ determines Phase
Characteristics ZH ()

But when delayed waves are larger than the first
arriving wave in the multi-path environment,

it becomes Non-minimum Phase.
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Gaussian Filter

* Transfer Function: H(f)=exp(—(f/f,)*)
 Impulse Response: h(t) = fox/; exp(—(af,t)*)
» Step Response: s(t) =1—7erfe(#f,t)
where erfe(x) = % J; exp(-u’) du :
complementary error function

* Mono pulse (T) response:
g(t)=s(t)—s(t-T)
= 1 [erfc(#f t(+—1)) —erfe(#f,t(3))]
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» For Random pulse sequence {a,},
g,()=>  ag(t-nT)

* Eye pattern is determined by f,T
f,T — large, Good eye pattern

* Bessel Filter of 5-th order ®Gaussian Filter
(Maximally Flat in delay characteristics)
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Nyquist Filter

» No interference condition at sampling time
 Roll-off Filter

1 for 0< fT‘S“T“
R(f)=1L[1-sin(& (2T -1)] for 5=<|fT|<ke
0 for e <|fT|

* Roll-off Response

r(t)= Sinigt’/ﬁf ) COZ%/T) a : roll-off factor(0 < <1)
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2WP(f)

= —

Frequency response
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Time response

Controlled Interference

Partial Response Filter

* Class of Partial Response Filter
Partial Response Filter: Binary sequence —
Multi-valued sequence — Spectrum Shaping

Partial Response Filter:

FIR Filter with Integer coefficient

 Similar concept: Morrison-Harashima
Precoding in Dirty-paper Coding
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Impulse response of the duo-binary conversion filter
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 Error Propagation and Pre-coder
Full response system : No error propagation
Partial response system: Error propagation
Pre-coder is necessary for prevention of error
propagation

2009/06/19 Wireless Communication Engineering I 57

Pre-coder in TX

Source information {a,} —

Pre-coded information {s,}

Digital calculation (Logical calculation)

Sy = .C-S,; (mod2)

k
=0
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Pre-coded information {S,} —

Partial response information {g,}

Analog calculation (Physical calculation)
k

On = Zci “Spi
i=0
Decoding in RX
a, =g, (mod2)

n

Apparently, error propagation is eliminated.
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0
x©
PR-VA (Partial Response & Viterbi Algorithm) is
a most powerful recording method in magnetic
recording.
Convolutional Code also utilizes a partial
response in the codeword
(1)
Xj
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1 .
R= 5, nonsystematic, m = 2 encoder
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State transition diagram for R = ;, m =2 code
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Trellis for four levels, R = ;, v =2 code.

Heavy line denotes route for message U = (11000...).




