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Spatial Fading Emulator

- The field testing of radio transmission techniques is often
time-consuming.

- The evaluation of cellular base station antenna arrays in
an anechoic chamber Is needed.

- With the use of an ESPAR antenna, the superposition of
scattered waves can be made easily.
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Propagation of mobile
communication

Testing and Evaluation of
Array System

. . " Base Station
Mobile Station
Evaluation of

\
E|:_E|u'- éu & Fading + DOA + AS

Scatters is needed

Fading wave caused by the superposition of scattered waves

—With the use of an ESPAR antenna,
fading waves can be easily made.
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Structure of Emulator |

ESPAR Anfenna

Structure

Excited Element

L

»” Base Station

Fading wave
with
AngularSpread

6 Parasitic Elements

" ‘| The input impedance of surrounding
-y parasitic elements will be controlled
- 1 to generate the fading properties.
(Y1 = diag[l/z,1/jaz, -, 1/ja] : variable
Y : Array Antenna Admittance Matrix : fixed
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Control of bias voltages to varactors

4

Control of Y|

s

Control of [iy, 1, ..., 1]

g

Control of multiple waves
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Approximated Equation of Received Signal

Received signal model (a(6,): Array mode vector) 01:DOA

— Number of estimate
r(t) = Zﬁ*ﬂ' )s(t) + n(t) parameters is 2 X N (5.6,

[approxmated by Taylor Series Expansion]
r(t) ~ va(0 + £)s(t) + n(t)

v and 0, for the case where f is minimum, become
the Maximum likelihood values.

7/:Zﬂi’ §:Z/8iA9i/7/’ 0 :é_l_Aei
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Approximated Equation of Received Signal

N

;,ﬁia’(ﬁﬁ—&{}i) ~ ;ﬁ?[a(ﬁ) 1 A0, dc;(;')]
= il da(0)
= (D_8:)a(d) + (D _ Bir0:)—, N
= va(0) +?‘Jagf) v = ;G
= ~[a(0) + 56239)] © o ‘Zlﬁiﬁgi
~ y[a(6 + £)] ¢ =1

r(t) ~ ,m(g + &)s(t) + n(t) [approximate]
0+¢ is a complex angle, the angular spread Is also expressed.
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Parameter Estimation

s(t)=1, because a Network Analyzer is used.
def
f=1r— ’}’EI1|2 + |r2 — ’}’ﬂ3|2 + ...+ |rm — ’}’EMF

— Estimate y and 6 where f isminimum  (0=6,+j6,)

1. Least mean square w.r.t. y a (61 + jba)'r|

t arg max
- a'r oo !
" P
2. The cost functionis o 2
[ = Ir—4a(@)’ K
— |ir'|2 _ |ﬂ'(9)irf|2
a(9)|” : _
— Mlnlmum AS[deg] 20 20 o

Parameter search
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Distribution of a Complex Angle

» Distribution of a Complex Angle Sy g.a0,/ 5 4;
— the ratio of two Gaussian distributions

W6 = sor@rcrs | M-distribution ]

Parameter C Is the absolute first order moment
of M-distribution and equal to the standard
deviation of DOA of the scattering wave are in
agreement.
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Error of parameter estimation

« Additive noise including system error Is
nl* = [r(t) —ya(0)

Since approximation error is large when vy is small,
the noise n becomes large.

v <o

When v Is smaller than the standard deviation of noise o,

estimation Is not appropriate.
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Experiments in an anechoic

chamber
e Measurement ""”"'””"""R"h""""""
Frequency:2.484[GHZz] ESPAR Antenna

. Fading wave V/
Distance:about 1.2[m](=10[A]) | l‘% with .

AngularSpread " I

Posifoner

GPIB ‘ [ GPIB
Reactance
Control _.?PC(C-PCI} /

The fading wave from an ESPAR antenna is measured
by a synthetic array with 6 elements.
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Experiments in an anechoic
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Power [dB]

* Time property —Received power
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Cumulative Probability
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—— Experimental : 33 | —— Experimental
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Probability Distribution of DOA

« Spatial property -DOA&AS
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- The performance of the fading emulator was verified
using experimental data.

- Using the ESPAR antenna, evaluation of the array
signal processing system becomes a much easier task.
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Conclusion

« Emulation of Rayleigh fading in an anechoic
chamber with angular spread 1is realized.

* It emulates cheaply and simply.

 Estimation by the Maximum Likelihood
method Is effective.

* It was shown that an ideal angular spread Is
emulated by M-distribution.
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Future works

 Concurrent emulation of the multiple user
 Control of the phase distribution
o Spatial correlation
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Noise & Interference
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* Noise and Interference in Wireless
Communication Systems

Noise and Interference determine a quality of

communication system and an achievable bit
rate.
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Schematic diagram of
wireless communication systems

Input signal
modulator
up-converter |¢{ local oscillator . spurious radiation,
¢ inter-modulation
power amplifier . spurious radiation,
¢ inter-modulation
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TX-antenna > another channel signal

v

. external noise,

radio channel co-channel interference,
¢ . adjacent-channel interference
RX-antenna

v
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low-noise
amplifier

local oscillator

v

down-converter

v

demodulator

v

output signal
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. receiver noise,

sensitivity suppression

. Inter-modulation
. spurious reception
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Noise and Interference In TX

* Transmitter noise _
(Continuous spectrum noise below 60dB)

«— Spectrum Impurity in Local Oscillator
High S/ N Oscillators are required.

 Spurious radiation (Line spectrum noise)

«<— Non-linearity in power-amplifiers and/or frequency
converter

Sharp Band pass Filters are required.
* Inter-modulation in TX

«— Strong another signal entering through TX antenna
High-Q Filters and Isolators are required.
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Noise and Interference In
Radio Wave Channel

« External noise

«— Lightning, Solar noise, Thermal noise,
Artificial noise, ..., impulsive and continuous
spectrum noise

 Co-channel interference

— Sensitivity suppression

* Adjacent-channel interference
— Side-lobe spectrum of adjacent channel signal
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Noise and Interference in RX
« Recelver noise

Thermal white noise power = kTB

(k : Boltzmann constant =1.38x10 % [J/K]
T : Temperature B :Bandwidth)

Noise Figure :(F =SN._ /SN_,)
Noise Measure : (M =(F —-1)/(1-1/G))
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« Sensitivity suppression
Low gain before IF-stage, Sharp Band-pass
Filter in RF-stage and IF-stage, and Low
noise in LO are required.

* Spurious reception
Image frequency

* Inter-modulation in RX
3rd order and 5th order IM are dominant.
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Noise

« Thermal noise
The equivalent noise power in W / Hz generated In
any ideal coherent amplifier of electromagnetic wave

N, = hf/[e“”” —1}

When frequency f is small enough (< 10" Hz)
N, = KT
where h: Planck constant ~ 6.6252x10%[J - s]

k : Boltzman constant
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 Shot noise: Poisson Process

N, oc I, (DC current)

« Switching noise
K

/C
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Equivalent Noise Temperature of
Noise Sources
T2 T3

+—= + +- -
Gl GlGZ

T =1,

equiv

Since the noise temperature and noise figure F,
referenced to Temperature T, are related by
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Cascade Connection of LNA

with Noise Figure F and Gain G

N
@ T
o]
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The corresponding overall noise figure is then
given by the Friis noise formula,

|:total — |:1_|_ F2 _1+ F3 _1+“'
Gl GlGZ
Gtotal — Gl GZ GB

F, should be minimum.
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2-Stage Case

F, -1
F12 — F1+ 23 I:122|:21
1
7
F21:F2+F1_1 |\/|1—F1_12F2_1=|\/|2
G, 1-451-4
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Power-limited System &
Interference-limited System

* Propagation-limited systems
Thermal and man-made noise play the most
Important roles in large-scale systems.
(1.e. satellite systems)

* Interference-limited systems
Unwanted interfering signals from nearby cells In
which the same frequency Is reused, play the most
critical role in cellar and micro cellar systems.
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* Propagation delay
Severe inter-symbol interference is possible if the
differential delay between two signals Is too great and
the received power levels are nearly equal.

« Simulcast transmitting frequency offsets
In digital paging applications, frequencies are often
offset from each other to mitigate the effects of
standing wave interference patterns, which could
otherwise cause localized areas of poor coverage.
The offset frequency increments for digital messaging
systems having symbol rates up to 3,200 symbols per
second are 100-450Hz. The maximum offset of the
carrier frequency Is chosen to never exceed +600Hz.
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Interference In
Mobile Communication Systems

* Personal Radio
(Simplex: Signal channel, non-simultaneous transmission)
Maximum Interference Effect

« MCA
(Dusimplex: Two channels, non-simultaneous transmission)
Medium Interference Effect

« Automotive Telephone
(Duplex: Two channels, simultaneous transmission)
Low Interference Effect
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Interference Cancel by
Array Sighal Processing

Spatial Signal Processing
— SINR Criteria
— MSE Criteria
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Arriving Wave
(dy,0,)
(d,0,) O
7 T O (dy, 6,)
/ [0} di (d,, 91 )
| 0 .
O (d3, 93)

y
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x(t)=a,s(t)+a,i(t)+n(n): received signal model

a, = a(6, ):spatial signature for desired signal s(t)

a, = a(é, ): spatial signature for undesired signal i(t)

n(t):additive noise
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 Linear Signal Processing

y(t)=w"x(t): output signal
w : welight vector for linear processing

y(t) =y, (t)+ y,(t)+y,(t)
=w*as(t)+wrai(t)+wnlt)

o
Eﬂyi (t)ﬂ+ E
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a(@): array mode vector with DOA 6
e.g. ULA (Uniform Linear Array)

a(0)=(1,2,2%,--)

i2ZAsin@
/ =e "’

A - Inter element spacing
A :wave length (=c/ f)
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* Interference Canceling principle —
ZF (Zero Forcing) Optimum Weight Vector

w =cle, —Oe,|
w'e =e, e —-0"=0"-0"=0
w_Le,

C : some constant
where

es :as/‘as"ei :ai/‘ai‘

6=a;,"-a,/|a|a;|=e;"e, :spatial correlation (0< 0| < 1)
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y.(t)=w"-as(t)= (es+ ~6'e,’ )ass(t)
S X0

s = ) = (- ) s
y,(t)=w"-ai(t)=0

I:Eﬂmﬁy}zO
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Y, (t)=w"n(t)

N

= (e: ~ 9*9i+)' n(t)

| |ya 0 |~ . - 0e,” JEln(n() Je. - 0e)
(es+ ~0%’ )anzl e, —0e,)
~0,2(1-0°0-00+6°0)

:an(l—‘ﬁ‘z)
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fof

P = E[\s 2] verage3|gnal power

F=S/(1+N)=-

o’ = E[n (t)n(t) ] average noise power
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« Maximizing SINR principle —
DCMP (Directional Constraint Minimization of Power)

Directional Constraint w™a, = constant
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Pla.| ‘6‘2
SINR : ==L | 1-
O, L+ o

ED i(t)ﬂ :average interference power
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When a, 1 a. (spatially orthogonal)

W, Wyeyp — €, Beam Forming Principle,
MRC (Maximum Ratio Combining)

r— 22 -sNR

Gn
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* Direction Finding Technigue =
Estimate of SS,a(6)

« MUSIC (Multiple Signal Classification)

 ESPRIT
— SUB-SPACE METHOD

— APRIORI KNOWLEDGE OF SIGNAL IS NOT
REQUIRED

— Blind Estimation
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Super resolution technigues

* Model-based parameter estimation
* Fine resolution than Sampling Theorem

« MUSIC, ESPRIT : Powerful DOA
techniques especially in radar application.
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RF FRONT-END FOR
SPATIAL PROCESSING




FREQUENCY CONVERSION
FROM RF TO IF

£p0=3) 4 (o, )-s00) 1)

¥ }Ai{Siﬂ(Ww‘)ms(z’f Lot)}
=x(t)- (Ar t A : )eXP(]'WLO')

x &) Xt
g * ' Ho ol * 9_
9 [ exp(arc

exp(i2rfio)
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ARRAY PROCESSING by Gilbert
Cell and Transformer

e

Complex envelope of k™ input.
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Signal current from
“imaginary” path

PMOS load §Signal current from
with CMFB |} “imaginary” path

Antenna # 2 “Real”
path control voitage

Y From LNA #2 or code

Antenna # 1 “Real”
path control voltage '
or code From LNA #1
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DESIRED
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64-QAM Desired signal < LO LOq
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- ifter
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nphfe- CH2
> ol Multiple-antenna 1o Vacior
Receiver Signal
Analyzer

1 Zhil er. CH3
Signal iy
Divider
Generator Ty,
Multi-tone interferer @ . it ° CH4
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incidence
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MEASURED RESULTS
BEFORE AND AFTER SIGNAL
PROCESSING for Interference

Canceling
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