

Hiroshi Yamaura

Example (1-1)

(a) Rotary Positioning Mechanism

(b) Two-DOF analytical model

The notation P is a pivot, D is a driving point and T is a positioning point. The moment of inertia of the mechanism around the pivot axis, $I P$, is $1.00 \times 10^{-6} \mathrm{kgm} 2$ and the length of $D P, L$, is 10 mm .

Example (1-2)

Figure (a) shows a rotary positioning mechanism. Compliance frequency response function at the point D has an anti-resonance frequency and a resonance frequency in a frequency region less than 9 kHz .

$$
\text { Anti-resonance frequency (Hz) : } 4382
$$

Resonance frequency $(\mathrm{Hz}) \quad: 8000$
In this frequency range, the positioning mechanism can be modeled as a two degrees-of-freedom mechanism shown in Fig.(b), where $m_{1}(\mathrm{~kg})$, $m_{2}(\mathrm{~kg})$ and $k(\mathrm{~N} / \mathrm{m})$ are effective masses and effective stiffness.

Identify these physical parameters in the analytical model.

Example (2)

Consider a two-DOF positioning mechanism shown in Fig.(a) and a case of the multi-switch bang-bang driving force Fig.(b).
(1) Derive the periods $T_{1}(\mathrm{~s})\left(>1.25 T_{\mathrm{n}}\right)$ from the no residual vibration condition.
(2) Derive the amplitude of the driving force $F(\mathrm{~N})$ corresponding to an access stroke $S(\mathrm{~m})$ of the positioning mechanism.

(a) Two-DOF model

(b) Multi-switch bang-bang control

Example (3)

The equation of torsional motion of a shaft depicted in the figure is expressed by the following equation.

$$
\rho I_{P} \frac{\partial^{2} \theta}{\partial t^{2}}-G I_{P} \frac{\partial^{2} \theta}{\partial x^{2}}=0
$$

where $\theta(t, x)$ is a torsional angle, ρ is density, and G is modulus of transverse elasticity of the shaft.

Show the free response against a set of given initial angular displacement and velocity distribution, $\theta(0, x)$ and $\dot{\theta}(0, x)$.

Fig. Torsional vibration of a fixed-free shaft

