

Department of Mechanical and
Control Engineering

Hiroshi Yamaura

Multi-degree-of-freedom Vibration System (2)

Analytical Solution

Bending Vibration of a Beam (3)

Uniform Beam

Bending Vibration of a Beam (4)

Equation of Motion
$\rho A \frac{\partial^{2} y}{\partial t^{2}}+E I \frac{\partial^{4} y}{\partial x^{4}}=0$

Coordinates and acting forces on an infinitesimal element

Analytical Solution (1)

$$
\begin{aligned}
& \rho A \frac{\partial^{2} y}{\partial t^{2}}+E I \frac{\partial^{4} y}{\partial x^{4}}=0 \\
& y(x, t)=Y(x) T(t)
\end{aligned} \longrightarrow \rho A Y \ddot{T}+E I T Y^{(4)}=0
$$

$$
\frac{\ddot{T}}{T}=\frac{-E I Y^{(4)}}{\rho A Y} \equiv-\omega^{2}
$$

Analytical Solution (2)

(a) $Y^{(4)}-a^{4} Y=0 \quad$ where $\quad a^{4}=\omega^{2} \frac{\rho A}{E I}$

$$
Y(x)=Y_{1} e^{a x}+Y_{2} e^{-a x}+Y_{3} e^{i a x}+Y_{4} e^{-i a x}
$$

$Y(x)$: Eigen function
a is determined from boundary conditions of $Y(x)$
a_{i} : i-th solution of the characteristic equation

Analytical Solution (3)

$$
\begin{gathered}
Y_{i}(x)=Y_{i 1} e^{a_{i} x}+Y_{i 2} e^{-a_{i} x}+Y_{i 3} e^{i a_{i} x}+Y_{i 4} e^{-i a_{i} x} \\
\left\{Y_{i 1} Y_{i 2} Y_{i 3} Y_{i 4}\right\}=\left\{\alpha_{i} \alpha_{i} y_{2 i} \alpha_{i} y_{3 i} \alpha_{i} y_{4 i}\right\}
\end{gathered}
$$

Orthogonality of eigen functions

$$
\int_{0}^{L} Y_{i}(x) Y_{j}(x) d x= \begin{cases}0 & i \neq j \\ \beta & i=j\end{cases}
$$

Either α_{i} or β can be given arbitrarily.

Analytical Solution (4)

(b) $\ddot{T}_{i}+\omega_{i}^{2} T_{i}=0$

$$
\begin{aligned}
& T_{i}(t)=T_{i}(0) \cos \left(\omega_{i} t\right)+\frac{\dot{T}_{i}(0)}{\omega_{i}} \sin \left(\omega_{i} t\right) \\
& \text { where } \quad \omega_{i}^{2}=\frac{E I}{\rho A} a_{i}^{4}
\end{aligned}
$$

Analytical Solution (5)

(c) General Solution

$$
y(x, t)=\sum_{n=1}^{\infty} Y_{i}(x) T_{i}(t)
$$

Analytical Solution (6)

(d) Initial Value Response

$$
y(x, 0) \text { and } \dot{y}(x, 0) \text { are given. }
$$

The value of β is set as 1 .

$$
\begin{aligned}
\longrightarrow T_{i}(0) & =\int_{0}^{L} y(x, 0) Y_{i}(x) d x \\
\dot{T}_{i}(0) & =\int_{0}^{L} \dot{y}(x, 0) Y_{i}(x) d x
\end{aligned}
$$

