Fundamentals of Dynamics (5)

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Two-degree-of-freedom Positioning Mechanism (2)

Modal Analysis (5)

Meaning of the eigen vectors

$$
\mathbf{v}_{1}=\left\{\begin{array}{l}
\alpha \\
\alpha
\end{array}\right\} \quad \begin{aligned}
& \text { Displacement of two mass have the same sign } \\
& \text { and the same value. }
\end{aligned}
$$

\longrightarrow Rigid body mode

$$
\mathbf{v}_{2}=\left\{\begin{array}{c}
\beta \\
-\frac{m_{1}}{m_{2}} \beta
\end{array}\right\} \begin{aligned}
& \text { Displacement of two mass have the } \\
& \text { different sign and the different value. }
\end{aligned}
$$

\longrightarrow Vibration mode

Modal Analysis (6)

The center of mass of the mechanism doesn't move with the vibration mode.

Modal Analysis (7)

Equation of motion with no excitation force

$\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}$

Coordinate transformation

$$
\begin{aligned}
& \mathbf{x}=\mathbf{V y} \\
& \mathbf{V}=\left[\begin{array}{cc}
\frac{1}{\sqrt{m_{1}+m_{2}}} & \sqrt{\frac{m_{2}}{m_{1}\left(m_{1}+m_{2}\right)}} \\
\frac{1}{\sqrt{m_{1}+m_{2}}} & -\sqrt{\frac{m_{1}}{m_{2}\left(m_{1}+m_{2}\right)}}
\end{array}\right] \\
& \begin{array}{l}
\mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} \\
\mathbf{y}=\left\{\begin{array}{l}
\text { Physical coordinate } \\
y_{1} \\
y_{2}
\end{array}\right\} \quad \begin{array}{l}
\text { Modal coordinate } \\
y_{i}: \text { Displacement of }
\end{array}
\end{array}
\end{aligned}
$$

Modal Analysis (8)

Equation of motion with no excitation force

$$
\mathbf{V}^{T} \mathbf{M V} \ddot{\mathbf{y}}+\mathbf{V}^{T} \mathbf{K V y}=\mathbf{0}
$$

$\longrightarrow \ddot{\mathbf{y}}+\Lambda \mathbf{y}=\mathbf{0}$
where

$$
\Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \quad \begin{aligned}
& \text { Asymmetric elements are } 0 \\
& \text { Responses are divided into } \\
& \text { two independent modes }
\end{aligned}
$$

Initial Value Response (1)

$$
\begin{aligned}
& \ddot{y}_{1}=0 \longrightarrow y_{1}(t)=y_{1}(0)+\dot{y}_{1}(0) t \\
& \ddot{y}_{2}+\lambda_{2} y_{2}=0 \\
& \longrightarrow y_{2}(t)=
\end{aligned} y_{2}(0) \cos \left(\omega_{2} t\right) .
$$

where

$$
\omega_{2}=\sqrt{\lambda_{2}}=\sqrt{\frac{k\left(m_{1}+m_{2}\right)}{m_{1} m_{2}}}
$$

Initial Value Response (2)

Initial conditions

$$
\begin{gathered}
\left\{\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right\}=\mathbf{V}^{-1}\left\{\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right\}, \quad\left\{\begin{array}{l}
\dot{y}_{1}(0) \\
\dot{y}_{2}(0)
\end{array}\right\}=\mathbf{V}^{-1}\left\{\begin{array}{l}
\dot{x}_{1}(0) \\
\dot{x}_{2}(0)
\end{array}\right\} \\
\mathbf{V}^{-1}=-\sqrt{m_{1} m_{2}}\left[\begin{array}{cc}
-\frac{m_{1}}{m_{2}} \beta & -\beta \\
-\alpha & \alpha
\end{array}\right]=\left[\begin{array}{ll}
\frac{m_{1}}{\sqrt{m_{1}+m_{2}}} & \frac{m_{2}}{\sqrt{m_{1}+m_{2}}} \\
\frac{\sqrt{m_{1} m_{2}}}{\sqrt{m_{1}+m_{2}}} & \frac{-\sqrt{m_{1} m_{2}}}{\sqrt{m_{1}+m_{2}}}
\end{array}\right] \text { in case (3) }
\end{gathered}
$$

Initial Value Response (3)

Reconstruction in Physical coordinates

$$
\mathbf{x}(t)=\mathbf{V} \mathbf{y}(t)
$$

