Fundamentals of Dynamics (5)

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Two-degree-of-freedom Positioning Mechanism (2)

Modal Analysis (5)

Meaning of the eigen vectors

 $\mathbf{v}_1 = \begin{cases} \alpha \\ \alpha \end{cases}$ Displacement of two mass have the same sign and the same value.

Rigid body mode

$$\mathbf{v}_2 = \left\{ \begin{array}{c} \boldsymbol{\beta} \\ -\frac{m_1}{m_2} \boldsymbol{\beta} \end{array} \right\}$$

Displacement of two mass have the different sign and the different value.

Vibration mode

Modal Analysis (6)

The center of mass of the mechanism doesn't move with the vibration mode.

Modal Analysis (7)

Equation of motion with no excitation force $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{0}$

Coordinate transformation

 $\mathbf{X} = \mathbf{V}\mathbf{y} \qquad \mathbf{x} = \begin{cases} x_1 \\ x_2 \end{cases} \qquad \text{Physical coordinate} \\ \mathbf{V} = \begin{bmatrix} \frac{1}{\sqrt{m_1 + m_2}} & \sqrt{\frac{m_2}{m_1(m_1 + m_2)}} \\ \frac{1}{\sqrt{m_1 + m_2}} & -\sqrt{\frac{m_1}{m_2(m_1 + m_2)}} \end{bmatrix} \qquad \mathbf{y} = \begin{cases} y_1 \\ y_2 \end{cases} \qquad \text{Modal coordinate} \\ y_i : \text{Displacement of} \\ \text{the i-th mode} \end{cases}$

Modal Analysis (8)

Equation of motion with no excitation force $\mathbf{V}^T \mathbf{M} \mathbf{V} \ddot{\mathbf{y}} + \mathbf{V}^T \mathbf{K} \mathbf{V} \mathbf{y} = \mathbf{0}$ \rightarrow $\ddot{\mathbf{y}} + \Lambda \mathbf{y} = \mathbf{0}$ $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ Responses are divided into where

Asymmetric elements are 0.

two independent modes.

Initial Value Response (1)

$$\ddot{y}_1 = 0 \longrightarrow y_1(t) = y_1(0) + \dot{y}_1(0)t$$

$$\ddot{y}_2 + \lambda_2 y_2 = 0$$

$$\longrightarrow y_2(t) = y_2(0)\cos(\omega_2 t)$$

$$+\frac{\dot{y}_2(0)}{\omega_2}\sin(\omega_2 t)$$

where

$$\omega_2 = \sqrt{\lambda_2} = \sqrt{\frac{k(m_1 + m_2)}{m_1 m_2}}$$

Initial Value Response (2)

Initial conditions

$$\begin{cases} y_1(0) \\ y_2(0) \end{cases} = \mathbf{V}^{-1} \begin{cases} x_1(0) \\ x_2(0) \end{cases}, \quad \begin{cases} \dot{y}_1(0) \\ \dot{y}_2(0) \end{cases} = \mathbf{V}^{-1} \begin{cases} \dot{x}_1(0) \\ \dot{x}_1(0) \\ \dot{x}_2(0) \end{cases}$$

$$\mathbf{V}^{-1} = -\sqrt{m_1 m_2} \begin{bmatrix} -\frac{m_1}{m_2} \beta & -\beta \\ -\alpha & \alpha \end{bmatrix} = \begin{bmatrix} \frac{m_1}{\sqrt{m_1 + m_2}} & \frac{m_2}{\sqrt{m_1 + m_2}} \\ \frac{\sqrt{m_1 m_2}}{\sqrt{m_1 + m_2}} & \frac{-\sqrt{m_1 m_2}}{\sqrt{m_1 + m_2}} \end{bmatrix} \text{ in case (3)}$$

Initial Value Response (3)

Reconstruction in Physical coordinates $\mathbf{x}(t) = \mathbf{V}\mathbf{y}(t)$