Fundamentals of Dynamics (4)

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Two-degree-of-freedom Positioning Mechanism (1)

Analytical Model

Analytical model of a two-degree-of-freedom positioning mechanism

Equation of Motion

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)=f_{1} \\
& m_{2} \ddot{x}_{2}+k\left(x_{2}-x_{1}\right)=f_{2}
\end{aligned}
$$

These equations can be written as
where

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right], \mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} \\
& \mathbf{K}=\left[\begin{array}{cc}
k & -k \\
-k & k
\end{array}\right], \mathbf{f}=\left\{\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right\}
\end{aligned}
$$

$\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{f}$

Similar expression with One-degree-offreedom vibration system

Modal Analysis (1)

No exciting force = Free vibration = Initial value response

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}
$$

General eigen value problem
$(\mathbf{K}-\lambda \mathbf{M}) \mathbf{v}=\mathbf{0}$

$$
\begin{aligned}
& \text { Solutions } \\
& \qquad \lambda_{1}=0, \lambda_{2}=\frac{k\left(m_{1}+m_{2}\right)}{m_{1} m_{2}} \quad \text { and } \quad \mathbf{v}_{1}=\left\{\begin{array}{l}
\alpha \\
\alpha
\end{array}\right\}, \mathbf{v}_{2}=\left\{\begin{array}{c}
\beta \\
-\frac{m_{1}}{m_{2}} \beta
\end{array}\right\}
\end{aligned}
$$

The value of α and β are determined later.

Modal Analysis (2)

Orthoganatity of eigen vectors

$$
\mathbf{v}_{i}{ }^{T} \mathbf{M} \mathbf{v}_{j}=\left\{\begin{array}{cc}
0 & i \neq j \\
\bar{m}_{i} & i=j
\end{array}, \quad \mathbf{v}_{i}{ }^{T} \mathbf{K} \mathbf{v}_{j}=\left\{\begin{array}{cc}
0 & i \neq j \\
\bar{k}_{i} & i=j
\end{array}\right.\right.
$$

\bar{m}_{i} :Modal mass, $\bar{k}_{i}:$ Modal stiffness $\longrightarrow \lambda_{i}=\frac{\bar{k}_{i}}{\bar{m}_{i}}$
If we define a modal matrix $\mathbf{V} \equiv\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$, then

$$
\mathbf{V}^{T} \mathbf{M} \mathbf{V}=\left[\begin{array}{cc}
\bar{m}_{1} & 0 \\
0 & \bar{m}_{2}
\end{array}\right], \mathbf{V}^{T} \mathbf{K} \mathbf{V}=\left[\begin{array}{cc}
\bar{k}_{1} & 0 \\
0 & \bar{k}_{2}
\end{array}\right] .
$$

Modal Analysis (3)

Determination of α and β
(1) $\alpha=\beta=1$
(2) $\left\|\mathbf{v}_{i}\right\|=1$
(3) $\bar{m}_{i}=1 \quad\left(\bar{k}_{i}=\lambda_{i}\right)$

Modal Analysis (4)

(3) $\bar{m}_{i}=1\left(\bar{k}_{i}=\lambda_{i}\right)$

$$
\begin{gathered}
\alpha=\frac{1}{\sqrt{m_{1}+m_{2}}}, \quad \beta=\sqrt{\frac{m_{2}}{m_{1}\left(m_{1}+m_{2}\right)}} \\
\mathbf{v}_{1}=\left\{\begin{array}{l}
\frac{1}{\sqrt{m_{1}+m_{2}}} \\
\frac{1}{\sqrt{m_{1}+m_{2}}}
\end{array}, \quad \mathbf{v}_{2}=\left\{\begin{array}{l}
\frac{m_{2}}{m_{1}\left(m_{1}+m_{2}\right)} \\
-\sqrt{\frac{m_{1}}{m_{2}\left(m_{1}+m_{2}\right)}}
\end{array}\right\}\right.
\end{gathered}
$$

