Fundamentals of Dynamics (3)

Department of Mechanical and Control Engineering

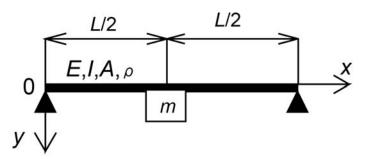
Hiroshi Yamaura

Open Course Ware, 2009, Tokyo Institute of Technology Copyright by Hiroshi Yamaura One-degree-of-freedom Vibration System (3)

Example (1)

Derive the natural frequency of a one DOF vibration system with a simple supported beam depicted in the figure by using Rayliegh's Method.

Length, section area, density, Young's modulus and geometrical moment of inertia of the beam are L(m), $A(m^2)$, ρ (kg/m³), E(Pa) and $I(m^4)$, respectively. The mass is m(kg) and the mass of the beam $m_b(kg)$ coinsides with $LA \rho$.



Open Course Ware, 2009, Tokyo Institute of Technology Copyright by Hiroshi Yamaura

Example (2)

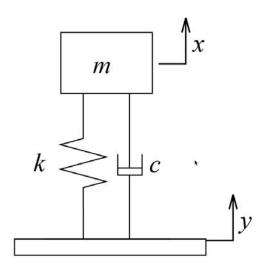
The figure depicts an analytical model of a vibration isolator. Design physical parameters of this analytical model satisfying the following specifications.

A. Vibration transmissibility should not be greater than $\sqrt{2}$ at the natural frequency of the system.

B. The lower limit angular frequency of vibration isolation should be 70(rad/s).

C. Mass of the table, m, is 200kg.

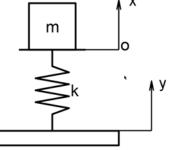
D. Stiffness of the spring should be as large as possible and damping should be as small as possible.



Example (3)

Consider an undamped one DOF vibration system shown in the figure. Derive the time response of the absolute displacement of the mass, x(t), aginst a base displacement y(t), (0, t < 0, t <

$$y(t) = \begin{cases} 0 & t < 0 \\ 0.5 & 0 \le t \le \alpha T_n \\ 1 & t > \alpha T_n \end{cases}$$



with the initial states x(0)=0 and $\dot{x}(0)=0$.

Here, $\alpha > 0$ and $T_n = 2\pi \sqrt{\frac{m}{k}}$ (s) is the natural period of the system.