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Actual vibration system (1)
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Fig.l Actual vibration systems
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Actual vibration system (2)

In many cases, the first mode is

Displacement
L] —i

0 1 2 3 4 dominant in the free vibration.

First mode

Second mode

Fig.2 Example of free vibration
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Analytical model

m (Mass ) nit

Spring Damper M. kg
k ¢ k:N/m stiffness constant
- ¢:.Ns/m Damping constant

Fig.3 Analytical model of

one-degree-of-freedom vibration system
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Deriving the equation of
motion (1)

Coordinate system Case 1 _Tx T f

o The origin of the displacement fl xl_ mn
should be placed on the
equilibrium point.

o The direction of the force should
agree with that of the
displacement. Both of the Case 1 T
and 2 in Fig.4 are acceptable.

k C

Fig.4 Coordinate system
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Deriving the equation of
motion (2)

Reaction Force

o Reaction force of the damper J Tf
IS proportional to the velocity of m *
the mass and its sign is minus. l l

o Reaction force of the spring is
proportional to the F=-kx F,=-cx

displacement of the mass and
Its sign is minus. Fig.5 Free body and acting force
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Deriving the equation of
motion (3)

d'Alembert's principle (1)

The sum of the differences between the
generalized forces acting on a system and the time
derivative of the generalized momentum of the
system itself along an infinitesimal displacement
compatible with the constraints of the system (a
virtual displacement), is zero.
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Deriving the equation of
[motion (4)

d'Alembert's principle (2)

Jp_ d(mv)
dt

. J

where F:—cic—kx-l-f

-ox = ()

Thus, the equation of motion is represented as the following.

mx+cx+hkx=f
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Natural angular frequency, natural
[frequency and natural period (1)

Equation of Motion of an undamped and free vibration system

mx + kx =0
The characteristic equation

mA +k=0 wmp l=+iw, :\/E
m
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Natural angular frequency, natural
[frequency and natural period (2)

General solution
x(t)=Ce ' + C,e
= D, cos w.t + D,SIN@, ¢
= Acos (ot — @)
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Natural angular frequency, natural
[frequency and natural period (3)

Displacement

0 0.5 1 1.5 2
t
Fig.6 Example of initial value response
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Natural angular frequency, natural
frequency and natural period (4)

Table 2 Important parameters

Notation Uit Meaning
.o : "l.,; ” : - . A lII ‘I;-'
Wy rad/s Natural angular frequency = Vm
£ Hz (=1/s) Natural frequency = "’%":
T 1 : _ 1 _ 2=
[ 5 Natural period = 7 =L
i bt ¢
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Equivalent stiffness (1)
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(a) Parallel springs
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(¢) Lever spring mechanism

(b) Serial springs
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Equivalent stiffness (2)

(e) Cantilever

(d) Distributed spring mechanism

F
El__}p
‘%’a ;xmﬁ,, 1 L;L,h_z

(g) Beam with fixed ends

L

) Beam with simple supported ends
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Rayliegh's method (1)

Undamped one degree-of-freedom system

mx+kx=0 Conservative System

1 ., 1
Mechanical Energy E=T+U = mez T Ekxz

The mechanical energy of a conservative system is
Invariant during motion.

mm) [ =Const.| wmmp 1. =U__
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Rayliegh's method (2)

(1) Assume the shape of the vibration that is often
called the mode shape.

(2) Calculate the maximum value of the kinetic energy
and that of the potential energy of the vibration
system.

(3) From the equivalence of the maximum value of the
kinetic energy and that of the potential energy, the
natural angular frequency is calculated.
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Rayliegh's method (3)
Example 1 : Linear Spring
M
L =t
T < FL
“«S

s

I'g.1 Effect of the mass of the spring on the natural angular frequency
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[Rayliegh's method (4)
Example 2 : Mass-Cantilever System

y
™ EI p

%I L ! _lv'f(t,y)

Fig.2 Effect of the mass of the beam on the natural angular frequency
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Analysis of a damped one degree-
[of-freedom vibration system (1)

ety

Fig.3 Damped one-degree-of-freedom vibration system

mx+cx+hkx=f
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of-freedom vibration system (2)

[Analysis of a damped one degree-

Free Vibration |(mx+cx+/lkxc=0

Free Vibration Response

where

x(t) = Ce™ + C,e™

Dy =—Cw, + 0, -1

C
éV — . .
9 /fmk Damping Ratio
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Damping ratio and initial value

response (1)

(a) Unstable
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Fig.4 Initial value response
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Damping ratio and initial value
[response (2)

(b) Under damping

x(t) = A,e*""'cos(w t — @)

|2 | X06®, +V, 2
AO_\XO_F( a)d j

. t -1 xoé/a)n + VO | N Timet
¢ = lan Fig.4 Initial value response

Displacement x(t)

XO(()d (o = 0.6, g = 0.8y, w, = 27)
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Damping ratio and initial value
response (3)

0.8

(c) Critical damping

o
o

x(t) = x,e™

+ (v, — xoﬂi)tellt

Displacement x(t)
o
-+

o
RO
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Timet
Fig.4 Initial value response

li.i"u. = [:]{'l iy = [:Iﬂu.:'n.q.-'l. — _.}'.-"'_,l
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Damping ratio and initial value
[response (4)

(d) Over damping

X( ) _ Vo llt

ﬂa

Timet

Fig.4 Initial value response
I'p = EI{] 'y = [:I-.""'-"u.:'n_-;.,'l. = _.}T"Jl
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|dentification of system
parameter (1

Tre- - e e e _
exp(-Lo,t) ' ;
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[1g.5 Free vibration of an actual vibration system to be modeled
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|dentification of system
[parameter (2)

Natural period I
1 & A
Logarithmic damping ratio O = —Z In l
N i=1 Ai+1
o
Damping ratio QV —
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|dentification of system
[parameter (4)

Case 1) m can be measured [ = ma)nz C = Zx/mké’

k
Case 2) k can be measured m=—y5 c= 2«/mk§
0,

n

Open Course Ware, 2009, Tokyo Institute of Technology 28
Copyright by Hiroshi Yamaura



