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One-degree-of-freedom 
Vibration System (1)
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Actual vibration system (1)
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Actual vibration system (2)

In many cases, the first mode is 
dominant in the free vibration. 

Most vibration systems can be  
modeled as one degree-of-
freedom vibration system.
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Analytical model

Ns/m : 
N/m : 
kg : 

c
k
m
SI Unit

Stiffness constant

Damping constant
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Deriving the equation of 
motion (1)

 Coordinate system
 The origin of the displacement              

should be placed on the 
equilibrium point.

 The direction of the force should 
agree with that of the 
displacement. Both of the Case 1 
and 2 in Fig.4 are acceptable.
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Deriving the equation of 
motion (2)

 Reaction Force
 Reaction force of the damper 

is proportional to the velocity of 
the mass and its sign is minus.

 Reaction force of the spring is 
proportional to the 
displacement of the mass and 
its sign is minus.
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Deriving the equation of 
motion (3)

 d'Alembert's principle (1)

The sum of the differences between the 
generalized forces acting on a system and the time 
derivative of the generalized momentum of the 
system itself along an infinitesimal displacement 
compatible with the constraints of the system (a 
virtual displacement), is zero.
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Deriving the equation of 
motion (4)

 d'Alembert's principle (2)

0)(








  x

dt
mvdF 

where fkxxcF  

Thus, the equation of motion is represented as the following.

fkxxcxm  
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Natural angular frequency, natural 
frequency and natural period (1)

0 kxxm 

Equation of Motion of an undamped and free vibration system 

The characteristic equation

02  km
m
ki nn       ,  
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Natural angular frequency, natural 
frequency and natural period (2)

General solution 

titi nn eCeCtx   21)(

tDtD n2n1 sin cos  

)( cos n   tA
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Natural angular frequency, natural 
frequency and natural period (3)
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Natural angular frequency, natural 
frequency and natural period (4)
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Equivalent stiffness (1)
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Equivalent stiffness (2)
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Rayliegh's method (1)

Undamped one degree-of-freedom system

0 kxxm 

Mechanical Energy 
22

2
1

2
1 kxxmUTE  

Conservative System 

The mechanical energy of a conservative system is 
invariant during motion. 

.ConstE  maxmax UT 
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Rayliegh's method (2)

(1) Assume the shape of the vibration that is often 
called the mode shape. 

(2)  Calculate the maximum value of the kinetic energy 
and that of the potential energy of the vibration 
system. 

(3)  From the equivalence of the maximum value of the 
kinetic energy and that of the potential energy, the 
natural angular frequency is calculated. 
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Rayliegh's method (3)

Example 1 ： Linear Spring
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Rayliegh's method (4)

Example 2 ： Mass-Cantilever System
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Analysis of a damped one degree-
of-freedom vibration system (1)

fkxxcxm  
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Analysis of a damped one degree-
of-freedom vibration system (2)

0 kxxcxm Free Vibration

Free Vibration Response
tt eCeCtx 21

21)(  

1 2
2,1   nn

mk
c

2
 Damping Ratio

where
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Damping ratio and initial value 
response (1)

(a) Unstable
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Damping ratio and initial value 
response (2)
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(b) Under damping
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Damping ratio and initial value 
response (3)

(c) Critical  damping
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Damping ratio and initial value 
response (4)

(d) Over damping
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Identification of system 
parameter (1)
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Identification of system 
parameter (2)
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Damping ratio 2

2
12 















Natural period nT



Open Course Ware, 2009, Tokyo Institute of Technology 
Copyright by Hiroshi Yamaura

28

Identification of system 
parameter (4)

Case 1) m can be measured 2
nmk  mkc 2

Case 2) k can be measured 2
n

km


 mkc 2


