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|. Recall

* The elasticity of rubbers is predominantly entropy-driven:

f = _T(Ej the force increases
ol J3| linearly with temperature

Less disorder

More disorder >
! | Entropy - a natural law that expresses the
«— > oPYy arexp
L o | driving force towards disorder
o e e — — — @

« Statistical mechanical theory

Based on gaussian statistical theory and by considering changes in entropy
due to deformation, we arrived at the following expression in uniaxial

tension ;

i — KTN A _i where N is the number junctions points in
S, V, 3 A ; the network
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Comments on gaussian statistical mechanic

 Not all the crosslinks are effective

G= PRT 1- 2M M. molar mass between entanglements
M M M molar mass

Cc

 Free rotation ?
<r2>:CmnI2 2<C_<10

+ excluded volume, long range interactions ...
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Stress (MPa)

Comments on gaussian statistical mechanic

isolated chain — network: validity ?

Validity of gaussian statistic ? (Total length of a chain can be > nl!)

Results
Experimental data . . .
Gaussian ~ | Problem : For large deformation, no hardening !

— Langevin statistic for large deformations and
phenomenological approaches.

elongation
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Il. For large deformations : Langevin statistic

Total length of a chain < nl

* Change of orientation : W(8) = flcos(0)
— potential energy u= - W(0)

 From Boltzman’s statistic, probability of having a segment oriented by an
angle 0 is proportional to :

p(6) eXp(—%j _ exp( i Eisej

 The average value of | in the direction of the applied force (x) is :

umax

()= [x(u)p(u)du

umin

Icos@exp( Fi cos@)si n&lé
(L) 4 KT

I < ( Fl cos@
fexp
kT

)Sinédé?
0
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Langevin statistic

Fl) kT

» After integration: () :coth(ﬂj—(ij:L( F'j
where L(x) : Langevin function

» After expansion of the inverse of Langevin function:

) )

. r
e For small deformations such as <n—xl><<1

I o0 be compared wi F |
oneget: |F = SKTQ g e compared >th —=AT g(—J
nl® S o
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Langevin statistic

» 3D calculation taking into account the 3 perpendicular deformations leads to:

JXX:ANkT{ L 1«/_{ \/_ 2(}]1%2(%}:“

n being the number of free links between 2 crosslinks
 Results

10
Force acting on a chain

6
Langevin statistic  /

falkT

0 T
0,0 0.5 1.0
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lll. Phenomenological approaches

* Use of strain-energy functions

dA = dW for isochoric, isothermal and reversible transformation

We can imagine that the deformation is produced by independant changes in each
of the component of strain, i.e:

0A 0A 0A 0A 0A 0A
dW = de, + de, +—de,+—de, + de, + d
de,, S de,, S de,, “ de,, 5 de,, S de,, S

dW is work done by the external force per unit volume:
dW = O;(XdeXX-I- Og/ydeyy'l_ O.ZZdeZZ+ Og/zdeyz+ O;(ZdeXZ + 0;<ydexy

This means that :

LA oA oA _oA oA A
XX A 2z~ z xz — Xy ~ A~
de 7 e, de,, * oe, de,, de,,

XX

Note : In fact, various energy functions can be defined, corresponding to
transformations at constant T and P, constant V and T, adiabatic
transformations...We will refer to the energy-function as U.
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Phenomenological approaches

 The form of the strain-energy functions

- U must be an homogeneous quadratic function of the strain components

- For isotropic solids, U must not depend on the choice of the direction of the
coordinate axes: U is a function of strain invariants.

e The strain invariants

Let’s note the extensions ratio parallel to the 3 coordinate axes A;,A,,A;

|,= 3 + 2e,, = A 2+A,2+A,2
1,=3 + 4e,, + 2(€,8.5-€,Es) = A12A%+ A 2A%+ A,2A 52
;=] &, + 2e,| = A2A,2A32=1 (no change of volume deformation)
— U=f (12,12,13)
U= (I, = A2HA24A52, |, = 1A 2+ UN,2 +1/A2)
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Phenomenological approaches

 If Uisto vanish at zero strain, this implies that:

U = Zc;ij(|1—3)i(|2—3)j where C_=0

i=0,j=0

 Example:
« Neo Hookeen material U =C(I,-3) = Cl(/]f +/1§ +/]§)
which corresponds to gaussian statistic if we put C,=1/2NKT

« Mooney-Rivlin U=C(l,-3)+C,(l,-3)

e The stress-strain relations

Strain components are specified, and stress components are obtained
using the strain-energy function.
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Stress-strain relations

f = force per unit of underformed cross-section

The corresponding stress components in the
deformed state are:

Ig(o;,‘,)

Figure 3.2. A cube of unit dimensions transforms to a rec-
tangular parallelepiped of edges A;, A, and A; under the
applied loads f;, f> and fs.

The work done (per unit of initial underformed volume) in an infinitesimal
displacement from the deformed state where A, changes to A, +d A; (i=1,2,3) is:

dU = f,dA, + f,dA, + f.dA,

O-XX

)
du = d/11+—Wd/12+%d/13

1 2 3
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Stress-strain relations

U =f(l, I, Iy), Therefore
U oI au al )
dU = b st b iE S
Li=At+a3+A2 T 10Az 0l 9
aU al, oU al, aly of
1 1 1 +——ZdA +— —Zdr+— 2=
12=F+F+A_2’ afz 69\1 ! afg 6‘.&; lz 312 at\3d‘l3
1 2 3
ol als a7 al, ol al
—2232,2 +—— el — =
I3=A1A2A5. 3ls Ay ol 6.{2d/t2+3f3 ahd"“'
Substituting
ol
_=2A L] T
A, 1 etc
L__2
PV EL etc.,
and
al
a%ﬂm,a%a%, etc.,
we have
o ol oLy
dU=2[A 97 an+a, Y 9y }
Yol T 2ar dj‘”””af1 dAs
13U 1 ol 1 oU
—2{-——dﬁ +r L a4+ Y }
AT oL, AS ol d’lﬁai ol, dis
1 aU 18U 18U
+2I {——dA += W p,+ LU }
Iy ol; Az 3I3d12+h3 T 6 dAsj.

A1, Az and A; are independent variables.
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Stress-strain relations

We can therefore equate the coefficients of dAi, dA,, and dAs in these
equations to find the stress components.
This gives

ﬂxx=2{ﬁ£ > B ger }, etc.

- —
al, A% af, L

If the solid is incompressible Is=1 and U = f(I;, I;) only. In this case the
stresses are now indeterminate with respect to an arbitrary hydrostatic press-

ure, p, because this pressure does not produce any changes in the deformation
variables A1, A3, As. Then

U 13U
ERTER AT
¢ Lal, A2 a1, 'R

In index notation the stresses are given as

U 1 aU
1122{)‘-!2___—}-‘_ »
% al, A2 of, ] P

o= 0.
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IV. Rubber elasticity #2 : summary

The elasticity of rubbers is predominantly entropy-driven. The stiffness
increases with increasing temperature.

Upon loading, the chains become ordered. This leads to a reduction in
entropy. Upon unloading, the MMs return to their initial state in the form of
random balls, provided that the chains are sufficiently long and flexible.

Based on statistical theory and by considering changes in entropy due to
deformation, we arrived at the following expression in uniaxial tension :

F kTN( 1)
O-:—: A3__2
S, V, A )

Such expression has been improved by using Langevin statistic .

Phenomenological theories that uses the concept of strain-energy functions
have been studied (Rivlin , Neo Hookean..). Neo Hookean model
corresponds to gaussian statistic.
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Thank you for your attention !
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