
Today’s Plan

Mechanics of solid polymers, Lecture #13, July  17th 2009

Rubber elasticity # 2 

I. Recall
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II. Langevin statistic

III. Phenomenological approaches

IV. Summary
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I. Recall

• The elasticity of rubbers is predominantly entropy-driven:

the force increases 
linearly with temperatureTl
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Entropy - a natural law that expresses the 
driving force towards disorder 

Less disorderMore disorder

• Statistical mechanical theory

Based on gaussian statistical theory and by considering changes in entropy
due to deformation, we arrived at the following expression in uniaxial
tension :

where N is the number junctions points in 
the network
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Comments on gaussian statistical mechanic

• Not all the crosslinks are effective 

• Free rotation ?

+ excluded volume, long range interactions …
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ρ Mc molar mass between entanglements
M   molar mass

22 nlCr ∞= 2 < C
∞ <10

+ excluded volume, long range interactions …

• Affine deformation ?
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• isolated chain →  network: validity ?

• Validity of gaussian statistic ? (Total length of a chain can be >  nl !)

• Results

Comments on gaussian statistical mechanic
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extension  λ

Problem : For large deformation, no hardening !

→  Langevin statistic for large deformations and 
phenomenological approaches.
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II. For large deformations : Langevin statistic

• Total length of a chain < nl

• Change of orientation : W(θ) = flcos(θ)
→ potential energy u= - W(θ)

• From Boltzman’s statistic, probability of having a segment oriented by an 
angle θ is proportional to : 
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• The average value of l in the direction of the applied force (x) is :
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Langevin statistic

• After integration:
where L(x) : Langevin function

• After expansion of the inverse of Langevin function:
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• After expansion of the inverse of Langevin function:

• For small deformations such as

one get :
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Langevin statistic

• 3D calculation taking into account the 3 perpendicular deformations leads to:

n being the number of free links between 2 crosslinks

• Results
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Force acting on a chain
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Gaussian statistic

Langevin statistic

Emmanuelle CHABERT                                  chabert@lms.polytechnique.fr Spring2009



III. Phenomenological approaches

• Use of strain-energy functions

dA = dW for isochoric, isothermal and reversible transformation

We can imagine that the deformation is produced by independant changes in each
of the component of strain, i.e:

dW is work done by the external force per unit volume: 
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dW is work done by the external force per unit volume: 

dW = σxxdexx+ σyydeyy+ σzzdezz+ σyzdeyz+ σxzdexz + σxydexy

This means that : 

Note : In fact, various energy functions can be defined, corresponding to 
transformations at constant T and P, constant V and T, adiabatic
transformations…We will refer to the energy-function as U.
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Phenomenological approaches

• The form of the strain-energy functions

- U must be an homogeneous quadratic function of the strain components

- For isotropic solids, U must not depend on the choice of the direction of the 
coordinate axes: U is a function of strain invariants.

• The strain invariants

Let’s note the extensions ratio parallel to the 3 coordinate axes λ1,λ2,λ31 2 3

I1= 3 + 2err = λ1
2+λ2

2+λ3
2

I2=3 + 4err + 2(erress-ersesr) = λ1
2λ2

2+ λ1
2λ3

2+ λ2
2λ3

2

I3=| δrs + 2ers | = λ1
2λ2

2λ3
2 = 1  (no change of volume deformation)

→ U=f (I1,I2,I3)

U= f(I1 = λ1
2+λ2

2+λ3
2, I2 = 1/λ1

2+ 1/λ2
2 +1/λ3

2)
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Phenomenological approaches

• If U is to vanish at zero strain, this implies that:

where C
∞
=0

• Example:
• Neo Hookeen material

which corresponds to gaussian statistic if we put  C1=1/2NkT 

ji

ji
ij IICU )3()3( 21

0,0

−−= ∑
∞

==

( )2
3

2
2

2
1111 )3( λλλ ++=−= CICU

1

• Mooney-Rivlin

• The stress-strain relations

Strain components are specified, and stress components are obtained
using the strain-energy function. 
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Stress-strain relations

f = force per unit of underformed cross-section

The corresponding stress components in the 
deformed state are:
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The work done (per unit of initial underformed volume) in an infinitesimal
displacement from the deformed state where λi changes to λi +d λi (i=1,2,3) is:
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Stress-strain relations
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Stress-strain relations
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IV. Rubber elasticity #2 : summary

• The elasticity of rubbers is predominantly entropy-driven. The stiffness 
increases with increasing temperature. 

•• Upon loading, the chains become ordered. This leads to a reduction in Upon loading, the chains become ordered. This leads to a reduction in 
entropy. Upon unloading, the MMs return to their initial state in the form of entropy. Upon unloading, the MMs return to their initial state in the form of 
random balls, provided that the chains are sufficiently long and flexible.random balls, provided that the chains are sufficiently long and flexible.

• Based on statistical theory and by considering changes in entropy due to 
deformation, we arrived at the following expression in uniaxial tension :deformation, we arrived at the following expression in uniaxial tension :

• Such expression has been improved by using Langevin statistic .
• Phenomenological theories that uses the concept of strain-energy functions

have been studied (Rivlin , Neo Hookean..). Neo Hookean model 
corresponds to gaussian statistic.
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Thank you for your attention !
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