
Today’s Plan

Mechanics of solid polymers, Lecture #12, July  10th 2009

Rubber elasticity # 1 

I. Thermodynamics
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II. Experiment

III. Statistical mechanical theory

IV. Summary
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Rubber and elastomers

• Ex : Natural rubber

To help elastomers bounce back even 
better it helps to crosslink them.

(1844) Vulcanization

• Network formation by cross-linking

2

Natural Rubber shoes

Hevea brasiliensis tree

Rubber tire

• Applications
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Introduction

• Rubber can be stretched to many times their original length and can bounce 
back into their original shape without permanent deformation: non linear
elasticity, or hyperelasticity.

• We aim at
- Understand the origin of rubber elasticity.
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- Understand the origin of rubber elasticity.
- Understand the unusual behaviour of a rubber when heated under tension.
- Be able to predict the stiffness of rubber from a simple picture of its 
molecular structure: statistical theory.
- Apply hyperelastic models to uniaxial extension and biaxial extension
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• dU = dQ – dW

I. Thermodynamics

Work

U,S
V,T

dW
dQ l

ff

Heat
Internal
energy

• -dW = fdl – pdV

• Reversible transformation:   dQ = TdS

• A = U -T S  Helmotz free energy

dA = dU - TdS - SdT = dQ – dW – TdS – SdT (reversible transformation)

= fdl – pdV - SdT (isochoric and isothermal transformation)

dA = fdl
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fdl = dA

dA = dU – TdS

After some rewriting : 
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Conclusion : Rubber elasticity (hyperelasticity) is driven by entropy

Typical values for fe/f       

f  =   fe +    fs
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Observations
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II . Experiment

Rubber in tension

Heat a stretched rubber band

7

F

Heat…..
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Experiments : understanding
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Entropic change as a function of stretch
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[MIT M. Buehler, http://ocw.mit.edu] 
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Rubber band

rubber bands, Richard Feynman
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http://www.youtube.com/watch?v=baXv_5z7HVY
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III. Statistical mechanical theory

• Entropy of a single chain.
• Entropy of a collection of N random chains per unit volume
• Calculation of entropy variation of this assembly
• Determination of its force and stiffness

• Assumptions (ideal network):• Assumptions (ideal network):
- Chains are constituted with n segments rotating freely
- No excluded volume
- The chain segments between crosslinks can be represented by 

Gaussian statistics
- Affine deformation
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Affine network model

• If one end of the chain is at (0,0,0), then the 
probability of the other end being at point (x,y,z) is :

dxdydzrb
b

dxdydzzyxp )exp(),,( 22
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where

l = bond length
n = number of links

• The entropy is given by Bolzman law:

S = klnW

where W is the total number of possible 
conformations, and W ∝ p(x,y,z)

S ∝ C – kb2r2
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22nl n = number of links

p(
r)

r/b
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Affine network model

• If we stretch the chain, so that the end is at a 
new location (Q'):

Q’(x’=λ1x, y’=λ2y, z’=λ3z)

• Then associated change in entropy is given by:
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• In the unstressed state, we have 

• So, on average : 

• Where :

13

[ ]321 )1()1()1( zyxkbS −+−+−−=∆ λλλ

3

2

2
r

x =

∫
∞

==
0

222 )( nldrrprr

• The total entropy change is given by 
multiplying the entropy of a single chain 
segment by N : 
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Application to uniaxial tension

• λ1=λ2

• λ1λ2λ3=1    (constant volume)

• Therefore: 
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• From

We have :

And  :   
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Elastic moduli

• For small deformation :  λ3=1 + ε33 where ε33 << 1

• Young’s modulus

• Shear modulus
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cM

RT
G

ρ=
ρ specific mass
R = 8.314  J K−1 mol−1 ideal gaz constant
Mc molar mass between entanglements
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Comments

• Correction for chains ends

• Free rotation ?

+ excluded volume, long range interactions …
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+ excluded volume, long range interactions …

• Affine deformation ?
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Comments

• isolated chain →  network: validity ?

• Results
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Problem : For large deformation, no hardening !

→  Langevin statistic for large deformations
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IV. Rubber elasticity #1 : summary

• The elasticity of rubbers is predominantly entropy-driven. The stiffness 
increases with increasing temperature. 

• The elastic force can be thought of as consisting of an entropic and an 
energetic part. The energetic contribution to the elastic force is generally 
small.

• Based on statistical theory and by considering changes in entropy due to 
deformation, we arrived at the following expression in uniaxial tension :deformation, we arrived at the following expression in uniaxial tension :

• Corrections are needed for large deformations : Langevin statistic, and 
phenomenological approaches.
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Applications

Rubber band and protein

Rubber bands heat engine
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http://www.youtube.com/watch?v=OW6aEmOsXv0

http://www.youtube.com/watch?v=lKpXlbeHwh4

Emmanuelle CHABERT                                  chabert@lms.polytechnique.fr Spring2009



Thank you for your attention

Lecture# 13 will be given on July 17th
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