
Today’s Plan

Linear viscoelasticity

I. DMA  

II. Time-temperature superposition

1Mechanics of solid polymers, Lecture #7, June 5th 2009

III. Mathematical representation

IV. Rheological models

V. Summary



Viscoelastic deformation is time and temperature dependant. 
Hence, we characterise the influence of  strain rate, frequency, or 
temperature.  We do :

� Loading tests at various strain rate

� Creep : apply a stress and then follow strain vs. time

Recall : Usual mechanical tests
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� Creep : apply a stress and then follow strain vs. time

� Stress relaxation : apply a sudden length change and then watch the 
stress decay

� Dynamic measurements : apply an oscillating strain at a fixed frequency 
and measure the amplitude and phase of the response
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I. DMA (Dynamic Mechanical Analysis ) 
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• Conservation modulus (stored elastic energy)

• Dynamic modulus
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• Internal friction (damping factor, loss tangent)



Application : Damping in car tyres

• The damping factor tanφ
represents the ratio 
between the dissipated 
energy in one cycle and the 
maximum of free energy in 
one cycle

Why using rubber ?
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one cycle

• Most of the time, the lost 
factor largely depends on 
temperature

For their high strain elasticity and energy 
absorbing qualities



Molecular motions and peaks
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Peaks in G’’ and in tanδ occur when the frequency of some 
molecular motion matches the imposed frequency.



Typical dynamic mechanical response
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T (ω fixed) 
or log t (T fixed)
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Recall : Tg may differ substantially from Τα
after [Jo Perez, 2001]
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• Effect of chemical composition
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All polymers have secondary relaxations; but 
the shift between β relaxation and α varies
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• Effect of crystallinity

E(t)
defects in 
crystallites

amorphous 
phase

defects in 
crystallites

amorphous 
phase
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after [Jo Perez, 2001]

------ semi-crystalline polymer
___ amorphous polymer

flow



• Effect of plasticizer
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• Blend of polymers

B particles in A matrix

Blends of polymers A50B50
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Blends of polymers A50B50 
α relaxation depends on morphology, while ∆Cp doesn’t change

A particles in B matrix

after [Jo Perez, 2001]



II. Time-Temperature Equivalency

Rheological properties are highly temperature dependent: Experiments
must be carried out at several temperatures in order to obtain a
complete picture of the material response.

It is often found that data, for example G’ (ω) and G” (ω), taken at
several temperatures can be brought together on a single master curve
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several temperatures can be brought together on a single master curve
by means of “time-temperature superposition”.

This makes possible the display on a single curve of material behavior
covering a much broader range of time or frequency that can ever be
measured at a single temperature. Materials whose behavior can be
displayed in this way are said to be “thermorheologically simple”.



Time-temperature equivalency
Construction of master curves (for amorphous polymers)

Hypothesis of thermorheological simplicity 
We can observe the same behaviour by varying time (frequency) or temperature.
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Master curve : example
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Shift factors: WLF equation 

WLF equation (Williams, Landel, Ferry)

)(
)(

)(
)(loglog

2

1

g

g

g
T

TTC
TTC

T
Ta −+

−−== τ
τ

where C1= 17.44   and   C2=51.6
so called « universal constants » but 
need in reality to be determined for each 
polymer.
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polymer.

For amorphous polymers with simple 
structures, within [Tg , Tg+50K ]

after [Ferry]

Example: You have a bucket of bricks 
and the bottom falls out after 30 min at 
Tg+50°C.  At T g+20°C, the bottom will 
drop out in 128 days.



II. Mathematical representation
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Recall : framework

• Small Perturbation Hypothesis  (SPH)
small deformations sup|ε|<<1 
infinitesimal strain tensor : 

• Linear viscoelasticity
if ε=f(σ) 
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if ε=f(σ) 
then f(mσ1+nσ2)=mf(σ1)+nf(σ2)

(it means that viscoelastic functions are independant of level of loading)

• isothermal
• isotropic  and non-ageing materials
• uniaxial frame 



Recall : Hereditary constitutive relationships
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J(t): creep function

Ju : unrelaxed compliance

• Creep integral form  :  

: convolution product⊗

• Relaxation integral form  :  
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• Relaxation integral form  :  
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E(t): relaxation function

Er :  relaxed modulus

Viscoelastic functions rule entirely the material’s response. 



Laplace-Carson transform

• Laplace Carson transform :

• Properties
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• Conclusion : Classical laws of linear elasticity can be applied in 
linear viscoelasticity as soon as quantities are remplaced by their 
Laplace transform counterparts. 
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Laplace-Carson transform properties

Function FunctionTransformed Transformed
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if for



Relationship between creep and stress relaxation

Consider a stress program in which τ
τ
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However, for dynamic responses:
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• General linear differential equation

where ai, bi are material parameters

Differential representation of linear viscoelasticity
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This is equivalent to describing the viscoelastic behaviour by rheological 
models constructed of elastic springs and viscous dashpots.



Elementary rheological models

Viscoelastic materials display the characteristics of both elastic solids 
and viscous fluids. These 2 ideal behaviours are modeled by the spring 
and the dashpot.

• Elastic solid • Viscous Fluid 
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Spring : Dashpotεσ E= εησ &=

Hooke’s law Newton’s law
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Standard linear solid (Zener model)
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Ea
where τ=η/Em

Homework : plot creep and relaxation responses



Linear viscoelasticity #2 : Summary

- Viscoelastic behavior of polymers is time (frequency) and temperature-
dependant.

- DMA is an efficient tool for investigating linear viscoelastic properties
(relaxations, molecular mobility, morphology..)

- Time temperature superposition holds if all relevant molecular motions 
speed up by the same ratio with an increased temperature.
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- Two mathematical descriptions of linear viscoelasticity :
- Hereditary integrals, deriving from Boltzmann superposition pple.
- Linear differential representation
This leads to combinations of elastic springs and viscous dashpots. 

- Relationships between viscoelastic functions have been established and  
efficiency of Laplace Carson transform has been shown.



Thank you for your attention

Lecture# 8 will be given on June 12th
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