

Today's Plan

Linear viscoelasticity

- I. DMA
- II. Time-temperature superposition
- **III. Mathematical representation**
- **IV. Rheological models**
- V. Summary

Recall : Usual mechanical tests

Viscoelastic deformation is time and temperature dependant. Hence, we characterise the influence of strain rate, frequency, or temperature. We do :

1 Loading tests at various strain rate

² Creep : apply a stress and then follow strain vs. time

3 Stress relaxation : apply a sudden length change and then watch the stress decay

④ Dynamic measurements : apply an oscillating strain at a fixed frequency and measure the amplitude and phase of the response

I. DMA (Dynamic Mechanical Analysis)

• Dynamic modulus

$$E_{*}(i\,\overline{\omega}) = \frac{\sigma^{*}(i\,\omega)}{\varepsilon^{*}(i\,\overline{\omega})} = E'(\,\overline{\omega}) + iE''(\,\overline{\omega})$$

• Conservation modulus (stored elastic energy)

$$E' = \frac{\sigma_0}{\varepsilon_0} \cos \delta$$

• Lost modulus (dissipated energy)

$$E'' = \frac{\sigma_0}{\varepsilon_0} \sin \delta$$

- Internal friction (damping factor, loss tangent)
 - $\tan \delta = \frac{E''}{E'}$

> Input $\sigma = \sigma_0 \sin(\omega t)$ > Response $\mathcal{E} = \mathcal{E}_0 \sin(\omega t - \delta)$

Application : Damping in car tyres

- The damping factor tan¢ represents the ratio between the dissipated energy in one cycle and the maximum of free energy in one cycle
- Most of the time, the lost factor largely depends on temperature

Why using rubber ?

For their high strain elasticity and energy absorbing qualities

Molecular motions and peaks

Peaks in G" and in $tan\delta$ occur when the frequency of some molecular motion matches the imposed frequency.

Typical dynamic mechanical response

Recall : Tg may differ substantially from T α 6

• Effect of chemical composition

All polymers have secondary relaxations; but the shift between β relaxation and α varies

• Effect of crystallinity

• Effect of plasticizer

• Blend of polymers

Blends of polymers $A_{50}B_{50}$ α relaxation depends on morphology, while ΔCp doesn't change

II. Time-Temperature Equivalency

Rheological properties are highly temperature dependent: Experiments must be carried out at several temperatures in order to obtain a complete picture of the material response.

It is often found that data, for example $G'(\omega)$ and $G''(\omega)$, taken at several temperatures can be brought together on a single master curve by means of "time-temperature superposition".

This makes possible the display on a single curve of material behavior covering a much broader range of time or frequency that can ever be measured at a single temperature. Materials whose behavior can be displayed in this way are said to be "thermorheologically simple".

Time-temperature equivalency

Construction of master curves (for amorphous polymers)

Hypothesis of thermorheological simplicity

We can observe the same behaviour by varying time (frequency) or temperature.

 a_T is the shift factor

Master curve : example

Figure 7.11. Storage compliance of poly-n-octyl methacrylate in the glass transition region plotted against frequency at 24 temperatures as indicated (after Ferry).

Shift factors: WLF equation

WLF equation (Williams, Landel, Ferry)

$$\log \alpha T = \log \frac{\tau(T)}{\tau(T_g)} = \frac{C_1(T - T_g)}{C_2 + (T - T_g)}$$

where $C_1 = 17.44$ and $C_2 = 51.6$ so called « universal constants » but need in reality to be determined for each polymer.

For amorphous polymers with simple structures, within [Tg , Tg+50K]

Example: You have a bucket of bricks and the bottom falls out after 30 min at T_g +50°C. At T_g +20°C, the bottom will drop out in 128 days.

Figure 7.14. Temperature dependence of the shift factor a_T used in plotting Figure 7.13. Points, chosen empirically; curve is WLF equations with a suitable choice of T_g (or T_s) (after Ferry).

Polymère	<i>T</i> _g [K]	$c_1^{\rm g}$	$c_2^{g}[K]$
polyisobutylène	205	16,6	104,4
polystyrène	373	13,7	50
polydiméthyl siloxane	150	6,1	69
polyméthacrylate de méthyle	381	34	80
poly(n-octyl méthacrylate)	253	16,1	107,3

after [Ferry]

14

II. Mathematical representation

Recall : framework

- Small Perturbation Hypothesis (SPH) small deformations $_{sup}|\varepsilon| << 1$ infinitesimal strain tensor : $\varepsilon_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right]$
- Linear viscoelasticity

if $\epsilon = f(\sigma)$ then f(m σ 1+n σ 2)=mf(σ 1)+nf(σ 2)

(it means that viscoelastic functions are independent of level of loading)

- isothermal
- isotropic and non-ageing materials
- uniaxial frame

Recall : Hereditary constitutive relationships

• Creep integral form :

$$\mathcal{E}(t) = J_{u}\sigma + \int_{-\infty}^{t} J(t-\tau) \frac{d\sigma(\tau)}{d\tau} d\tau$$

 $\mathcal{E}=J\otimes \frac{D\sigma}{Dt}$

• Relaxation integral form :

$$\sigma(t) = E_r \mathcal{E} + \int_{-\infty}^{t} E(t - \tau) \frac{d\mathcal{E}(\tau)}{d\tau} dt$$
$$\sigma = E \otimes \frac{D\mathcal{E}}{Dt}$$

J(t): creep function Ju : unrelaxed compliance

 \otimes : convolution product

E(t): relaxation function Er : relaxed modulus

Viscoelastic functions rule entirely the material's response.

Laplace-Carson transform

- Laplace Carson transform : $f^*(p) = p \int_0^\infty f(t) e^{-pt} dt$ Properties $\left(\frac{df}{dt}\right)^* = p f^*(p)$

hence
$$\left(A \otimes \frac{DB}{Dt}\right)^* = \left[\int_{-\infty}^t A(t-\tau) dB(\tau)\right]^* = A^*(p)B^*(p)$$

hence
$$\sigma^*(p) = E^*(p)\varepsilon^*(p)$$
 $\varepsilon^*(p) = J^*(p)\sigma^*(p)$
with $E^*(p) = 1/J^*(p)$

by inverse transform : E(t) and J(t)

the complexe modulus is obtained by: $\tilde{E}(\omega) = E^*(p = i\omega)$

Conclusion : Classical laws of linear elasticity can be applied in ٠ linear viscoelasticity as soon as quantities are remplaced by their Laplace transform counterparts.

Laplace-Carson transform properties

Function	Transformed	Function	Transformed
f(t)	$f^+(p)$		1/p
C.f(t)	$C.f^+(p)$	t ⁿ	$\frac{n!}{p^n}$
$\frac{d}{dt}$	p	exp(-at)	$\frac{p}{p+a}$
H(t)		$1 - \exp(-at)$	$\frac{a}{p+a}$
$H(t-\tau)$	$\exp(-\tau p)$	$\cos \omega t$	$\frac{p^2}{p^2 + \omega^2}$
$f(t-\tau)$	$\exp(-\tau p) f^+(p)^*$	sin ωt	$\frac{p\omega}{p^2 + \omega^2}$
$ \begin{aligned} & \text{if } f(t) = 0 \\ & f'(t) \\ & \frac{\mathrm{d}f}{\mathrm{d}t}(t) \otimes q(t) \end{aligned} $	for $t \leq 0$ $pf^+(p)$ $f^+(p)g^+(p)$	$f(t) \exp(-at)$ $(-t)^{m} f(t)$	$\frac{p}{p+a}f^{+}(a+p)$ $p\frac{d^{m}}{da^{m}}\left(\frac{f^{+}(p)}{p}\right)$

Relationship between creep and stress relaxation

Consider a stress program in which

$$\frac{d\sigma(\tau)}{d\tau} = \frac{dG(\tau)}{d\tau}$$

 $\mathcal{E}(t) = \int_{0}^{t} J(t-\tau) \frac{d \mathcal{O}(\tau)}{d \tau} d\tau$ $\mathcal{E}(t) = \int_{0}^{t} J(t-\tau) \frac{d G(\tau)}{d \tau} d\tau = cst$ normalize : $\int_{0}^{t} J(t-\tau) \frac{d G(\tau)}{d \tau} d\tau = 1$ hence : $\int_{0}^{t} G(\tau) J(t-\tau) d\tau = t. \longrightarrow G(t) \neq \frac{1}{J(t)}$ However, for dynamic responses: $G^{*}(i\omega) = \frac{1}{J^{*}(i\omega)}$

Differential representation of linear viscoelasticity

General linear differential equation

$$a_n \frac{\partial^n \sigma}{\partial t^n} + a_{n-1} \frac{\partial^{n-1} \sigma}{\partial t^{n-1}} + \ldots + a_0 \sigma = b_n \frac{\partial^n \varepsilon}{\partial t^n} + b_{n-1} \frac{\partial^{n-1} \varepsilon}{\partial t^{n-1}} + \ldots + b_0 \varepsilon$$

where a_i, b_i are material parameters

This is equivalent to describing the viscoelastic behaviour by rheological models constructed of elastic springs and viscous dashpots.

Elementary rheological models

Viscoelastic materials display the characteristics of both elastic solids and viscous fluids. These 2 ideal behaviours are modeled by the spring and the dashpot.

- Spring: $\sigma = E\mathcal{E}$
 - Hooke's law

Viscous Fluid

Dashpot $\sigma = \eta \dot{\mathcal{E}}$

Newton's law

Maxwell model

dynamic response

$$\widetilde{E}(\omega) = E^*(p = i\omega) = E \frac{i\omega}{i\omega + E/\eta}$$

Voigt model

creep response

dynamic response
$$\widetilde{J}(w) = J^*(iw)$$

 $J(w) = \frac{1}{E} \left(\frac{1}{1+iw\tau}\right)$

24

Standard linear solid (Zener model)

 $a_0\sigma + a_1\frac{d\sigma}{dt} = b_0\varepsilon + b_1\frac{d\varepsilon}{dt}$

Homework : plot creep and relaxation responses

Linear viscoelasticity #2 : Summary

- Viscoelastic behavior of polymers is time (frequency) and temperaturedependant.

- DMA is an efficient tool for investigating linear viscoelastic properties (relaxations, molecular mobility, morphology..)

- *Time temperature superposition* holds if all relevant molecular motions speed up by the same ratio with an increased temperature.

- Two mathematical descriptions of linear viscoelasticity :

- Hereditary integrals, deriving from Boltzmann superposition pple.
- Linear differential representation

This leads to combinations of elastic springs and viscous dashpots.

- Relationships between viscoelastic functions have been established and efficiency of Laplace Carson transform has been shown.

Thank you for your attention

Lecture# 8 will be given on June 12th