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Mechanics of solid polymers, Lecture #7, June 5t 2009



Recall ;: Usual mechanical tests

Viscoelastic deformation is time and temperature dependant.
Hence, we characterise the influence of strain rate, frequency, or
temperature. We do :

@ Loading tests at various strain rate
@ Creep : apply a stress and then follow strain vs. time

® Stress relaxation : apply a sudden length change and then watch the
stress decay

@ Dynamic measurements : apply an oscillating strain at a fixed frequency
and measure the amplitude and phase of the response



|. DMA (Dynamic Mechanical Analysis )
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Application : Damping in car tyres

Why using rubber ?
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For their high strain elasticity and energy
absorbing qualities



Molecular motions and peaks
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Peaks in G” and in tand occur when the frequency of some
molecular motion matches the imposed frequency.



Typical dynamic mechanical response
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Recall : Tg may differ substantially from Ta 6



« Effect of chemical composition
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All polymers have secondary relaxations; but
the shift between [3 relaxation and a varies



« Effect of crystallinity
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» Effect of plasticizer
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* Blend of polymers
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Il. Time-Temperature Equivalency

Rheological properties are highly temperature dependent: Experiments
must be carried out at several temperatures in order to obtain a
complete picture of the material response.

It is often found that data, for example G’ (w) and G” (w), taken at
several temperatures can be brought together on a single master curve
by means of “time-temperature superposition”.

This makes possible the display on a single curve of material behavior
covering a much broader range of time or frequency that can ever be
measured at a single temperature. Materials whose behavior can be
displayed in this way are said to be “thermorheologically simple”.

11



Time-temperature equivalency
Construction of master curves (for amorphous polymers)

Hypothesis of thermorheological simplicity
We can observe the same behaviour by varying time (frequency) or temperature.
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ar is the shift factor
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Master curve : example
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Figure 7.11. Storags compliance of poly-n-octyl methacryiate in the
glass transition region plotted against frequency at 24 temperatures as

indicated {after Ferry},
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Figure 7.13. Composite curve obtained by plotting the data of Fig. 7.1!
with suitable shift factors, giving the behaviours over an extended

frequency scale at temperature T, (after Ferr}').
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Shift factors: WLF equation

WLF equation (Williams, Landel, Ferry)

(1) __ G(T-Ty)
T(Tg)_ C2+(T—Tg)

logar=log

where C,=17.44 and C,=51.6

so called « universal constants » but
need in reality to be determined for each
polymer.

For amorphous polymers with simple
structures, within [Tg , Tg+50K ]

Example: You have a bucket of bricks
and the bottom falls out after 30 min at
T,+50T. At T ;+20C, the bottom will
drop out in 128 days.
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Figure 7.14. Temperature dependence of the shift factor ay used in
plotting E:gurc 7.13. Points, chosen empirically; curve is WLF equa-
tions with a suitable choice of T, (or T,) (after Ferry).

Polymére T, K] of  cFIK]
polyisobutyléne 205 166 1044
polystyréne 373 13,7 50
polydiméthyl siloxane 150 6,1 69
polyméthacrylate de méthyle 381 34 80
poly(n-octyl méthacrylate) 253 16,1 107.3

L1

after [Ferry]



ll. Mathematical representation
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Recall : framework

Small Perturbation Hypothesis (SPH)
small deformations g |e[<<1
infinitesimal strain tensor : &i 2|:6Xj+a)6 }
Linear viscoelasticity
if e=f(0)
then f(mol+no2)=mf(cl)+nf(c2)
(it means that viscoelastic functions are independant of level of loading)

isothermal

iIsotropic and non-ageing materials
uniaxial frame
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Recall : Hereditary constitutive relationships

» Creep integral form :

J(t): creep function

Ju : unrelaxed compliance

St)=duo+ j J(t—z)%d r

£=J0] [I)D(tf []: convolution product

» Relaxation integral form :

E(t): relaxation function

o(t)=Ec+ j E(t- z)dé( Dt Er - relaxed moduus

o=e02¢
Dt

Viscoelastic functions rule entirely the material’'s response.
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Laplace-Carson transform

« Laplace Carson transform: f (p) = pj f (t)e Pdt
0

: df \ .
 Properties — | =of
( dtj (p)

DB

convolution products

* t *
hence (ADE) :DA('[‘T)dB(T)} =A(p)B(pP) transform into classical

product
hence o (p)=E (p)e (p) £(p)=J"(p)a (p)
with  E'(p)=1/J"(p)
by inverse transform :  E(t) and J(t)

the complexe modulus is obtained by: E(@) =E (p=iw)

* Conclusion : Classical laws of linear elasticity can be applied in
linear viscoelasticity as soon as quantities are remplaced by their
Laplace transform counterparts.

18



Laplace-Carson transform properties

Function Transformed Function Transformed
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Relationship between creep and stress relaxation

Consider a stress program in which dO(TZ)_dcdﬁgzj

,s(t):t'J(t—z)dO( Ddr

0
t

aty=[J(t- z)dG(z)d r=cst

0

normalize : jJ(t Z)dG(Z)dT—l

hence : f: G(N)Jt—1)dr=¢t| — G(t)¢

i)

. * =
However, for dynamic responses: |G*(1 W)=z J*( @)

20



Differential representation of linear viscoelasticity

General linear differential equation
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where a;, b, are material parameters

This is equivalent to describing the viscoelastic behaviour by rheological
models constructed of elastic springs and viscous dashpots.
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Elementary rheological models

Viscoelastic materials display the characteristics of both elastic solids
and viscous fluids. These 2 ideal behaviours are modeled by the spring
and the dashpot.

e Elastic solid * Viscous Fluid
F F ;
-V ——p T
PR — I..__\%&‘—.J
Fak x F=¢x
F‘ i" F‘ ft F ¢ O'[/A{
N £ % ‘C:'
Spring: g = E& Dashpot O)&
Hooke’s law Newton’s law
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Maxwell model

E n creep response
A
_/\/\/\/— — = E + g g
E 7 0
A
. (P . E=oln
relaxation response pe = [E +Ej0 € olE
° “ olE
o =E—P ¢ 0 |
p+E/n
t E(t) =Eexp(t/r)] 7=n/E characteristic time
. ~ . . W
dynamic response E(w=E (p=iw) =E———
iw+E/n
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Voigt model

- o=Eeg+né
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creep response
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Standard linear solid (Zener model)

aoo+add s +hdE

dt dt
= n
_%HF_ a+r%—?: Eag+(Emt Ea)T%
W where t1=n/E,

Homework : plot creep and relaxation responses
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Linear viscoelasticity #2 : Summary

- Viscoelastic behavior of polymers is time (frequency) and temperature-
dependant.

- DMA is an efficient tool for investigating linear viscoelastic properties
(relaxations, molecular mobility, morphology..)

- Time temperature superposition holds if all relevant molecular motions
speed up by the same ratio with an increased temperature.

- Two mathematical descriptions of linear viscoelasticity
- Hereditary integrals, deriving from Boltzmann superposition pple.
- Linear differential representation
This leads to combinations of elastic springs and viscous dashpots.

- Relationships between viscoelastic functions have been established and
efficiency of Laplace Carson transform has been shown.
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Thank you for your attention

Lecture# 8 will be given on June 12th
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