Axiomatic Bargaining with emphasis on renegotiation

Norimasa Kobayashi

2009

Bargaining Games and Solutions

Definition (Bargaining problem)

A bargaining problem is a pair $(S, d) \in \Sigma$, where $S \subset \Re^N$ and $d \in S$.

- *S* is a utility possibility set (UPS).
- d is a disagreement point.

Definition (Solution)

A solution is a function $\varphi : \Sigma \to \Re^N$ such that $\forall (S, d) \in \Sigma : \varphi(S, d) \in S$.

Henceforth, without loss of generality, $d \equiv 0$ is assumed for simplicity of representation.

Decomposability and Comprehensiveness

Definition (Comprehensiveness)

$$\forall x \in S, y \in \Re_+^N$$
:

$$y \le x \Rightarrow y \in S$$

Comprehensiveness of S is necessary to obtain weak Pareto-efficiency of an egalitarian solution.

Decomposability and Strong Monotonicity [Kalai(1977)]

Definition (Decomposability (Step-by-Step Negotiation))

 φ satisfies decomposability if it satisfies the following.

For
$$\forall S \subset \forall S'$$
, define $S'' \equiv \{x'' \in \Re_+^N | \exists x' \in S' : x' = x'' + F(S) \}$. Then,

$$\varphi(S') = \varphi(S) + \varphi(S'')$$

Definition (Strong Monotonicity (Issue Monotonicity))

$$\forall S \subset \forall S' : \varphi(S) \leq \varphi(S')$$

Equivalence Theorem

Definition (Proportional)

Solution φ is proportional if $\exists p_1,...,p_n > 0$, $\forall S \in \Sigma$

$$\varphi(S) = \max\{\lambda | \lambda p \in S\} p$$

Theorem (Kalai [1977])

Bargaining solution φ is decomposable $\Leftrightarrow \varphi$ is strongly monotonic

Thus we obtain the following collorary.

Theorem

Bargaining solution φ is decomposable $\Leftrightarrow \varphi$ is proportional

E. Kalai.

Proportional solutions to bargaining situations: interpersonal utility comparisons.

Econometrica, 45:1623-1630, 1977.