

Information integration

A girl and an old woman

Ambiguous Face

Information integration

Functions of acoustic peripheral system					
External ear		Band-pass filter			
Middle ear		Impedance conversion			
		Band-pass filter			
		Automatic gain control			
	Basilar membrane vibration (motion)	Frequency conversion			
		Adaptive Q-type band-pass filter			
		Frequency masking			
		Two tone interference (suppression)			
Inner ear		Combination tone generation			
inner ear	Inner hair cell / Synapse connection	Half wave rectifier			
		Saturation-type firing rate - sound pressure conversion			
		Emphasis of rising			
		Short-time adaptation			
		Synchronous firing			
1st acoustic nerve		Nerve excitation transmission path			
Efferent nerve		Dynamic range control, etc.			

Short sound with physical time duration *T_i*

Subjective time duration by the model is expressed by T_{si} $T_{p} \longrightarrow t \longrightarrow$

Sound sequence with physical blank length T_p

Subjective blank duration by the model is expressed by T_{sp}

Fastl 1981

Waterfall

Escher 1961

Worked exercise

Suggest ideas for an interface which uses the properties of sound effectively.

Answer

You might approach this exercise by considering how sound could be added to an application with which you are familiar. Use your imagination. This is also a good subject for a literature survey.

Speech sounds can obviously be used to convey information. This is useful not only for the visually impaired but also for any application where the user's attention has to be divided (for example, power plant control, flight control, etc.). Uses of non-speech sounds include the following:

- Attention to attract the user's attention to a critical situation or to the end of a process, for example.
- Status information continuous background sounds can be used to convey status information. For example, monitoring the progress of a process (without the need for visual attention).
- Confirmation a sound associated with an action to confirm that the action has been carried out. For example, associating a sound with deleting a file.
- Navigation using changing sound to indicate where the user is in a system. For example, what about sound to support navigation in hypertext?

Cashing in

Closure gives you a nice 'done it' when we complete some part of a task. At this point our minds have a tendency to flush short-term memory in order to get on with the next job. Early automatic teller machines (ATMs) gave the customer money before returning their bank card. On receiving the money the customer would reach closure and hence often forget to take the card. Modern ATMs return the card first!

Can you remember?

HEC ATR ANU PTH ETR EET

THE CAT RAN UP THE TREE

Improve your memory

Many people can perform astonishing feats of memory: recalling the sequence of cards in a pack (or multiple packs – up to six have been reported), or recounting π to 1000 decimal places, for example. There are also adverts to 'Improve Your Memory' (usually leading to success, or wealth, or other such inducement), and so the question arises: can you improve your memory abilities? The answer is yes; this exercise shows you one technique.

Look at the list below of numbers and associated words:

1	bun	6	sticks
2	shoe	7	heaven
3	tree	8	gate
4	door	9	wine
5	hive	10	hen

Long-term memory may store information in a semantic network

	esentation of k	nowledge	e by script				
A script for visiting the vet							
Entry conditions:	dog ill vet open owner has money	Roles:	vet examines diagnoses treats owner brings dog in pays				
Result:	dog better owner poorer vet richer		takes dog out				
Props (objects):	examination table medicine instruments	Scenes:	arriving at reception waiting in room examination paying				
		Tracks:	dog needs medicine dog needs operation				

Reasoning

• Deductive reasoning: derives the logically necessary conclusion from the given premises

If it is Friday then she will go to work It is Friday

Therefore she will go to work

 Inductive reasoning: generalizes from cases we have seen to infer information about cases we have not seen.
If every elephant we have ever seen has a trunk, we infer that all elephants have trunks

• Abductive reasoning: reasons from a fact to the action or state that caused it.

Suppose we know that Sam always drives too fast when she has been drinking. If we see Sam driving too fast we may infer that she has been drinking.

