nVIDIA GPU

GPU Computing (GPGPU) for Computational Fluid Dynamics

Global Scientific Information and Computing Center Tokyo Institute of Technology

Takayuki Aoki

GPU Architecture

Multiprocessor

Shared memory

Streaming Processor

~4GB (video memory: VRAM) 16(G80, G82), 30(G200) 16 Kbyte

8 SP for 1 Multiprocessor: ~ 240

		GeForce GTX 280 (nVIDIA)	
GPU	Peak Performance [GFlops]	622, 933*	
	# of SP	240	
	SP Clock [MHz]	1296	
Video	Transfer Rate[GB/s]	140	
Memory	Memory Interface [bit]	512	
	Memory Clock[MHz]	2214 (GDDR3)	
	Capacity [MB]	1024	
	1.4	ALL AND A DECEMBER OF	_

2 instruction issue

1

3

Peak Power : 236W

2

4

Types of GPU Usage on HPC Applications

FULL GPU Use

Acceleration ×10~×100

※ limited types of calculations※ amount of on-board memory

Partial GPU Use Acceleration 10 % ~ × 3

※ Hot spot のみ GPU処理 ※ Data communication between CPU main memory and GPU VRAM

Types of Memory Access

Classification of CFD

Compressible fluid analysis

Supersonic flow, Acoustic wave, Explosion, Shock wave, . . .

High-accurate numerical methods:

- T. Aoki, Comp. Phys. Comm., Vol.102, No.1-3, 132-146 (1997)
- Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol. 227, Issue 4, 2263-2285 (2008)
- K. Kato, T. Aoki, M. Yoshida, et. al., Int. J. Numerical Methods in Fluids, Vol.51, 1335-1353 (2006)
- Y. Imai, T. Aoki, J. Comp. Phys., Vol.217, 453-472 (2006)
- Y. Imai, T. Aoki, J. Comp. Phys., Vol.215, 81-97 (2006)

Incompressible fluid analysis

- Most of flow phenomena in our daily life,
- Turbulent flow, Multi-phase flow, Reacting flow, . .
- Semi-implicit Time Integration \rightarrow Poisson Solver

7

Incompressible CFD Application

Incompressible Navior-Stokes Equation

$\nabla \cdot \boldsymbol{u} = 0$	Poisson equation
$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla \boldsymbol{p} + \boldsymbol{v}$	$\Delta \boldsymbol{u} \qquad \Delta \boldsymbol{p}^{n+1} = \frac{\nabla \cdot \boldsymbol{u}^{n+1}}{\Delta t}$
Advection Term:	High-accurate FDM (Suitable for GPU)
Diffusion Term:	2 nd order Center FDM (easy)
Velocity Divergence:	Staggered FDM (easy)
Poisson equation:	Red & Black MG(hard)
Pressure Gradient:	Staggered FDM(easy) 9

RIKEN Benchmark Problem

Poisson Equation: $\nabla \cdot (\nabla p) = \rho$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} + \alpha \frac{\partial^2 p}{\partial xy} + \beta \frac{\partial^2 p}{\partial xz} + \gamma \frac{\partial^2 p}{\partial yz} = \rho$$

Discretized Form:

Detail of RIKEN Benchmark Problem

Read only 12 arrays : a, b, c, bnd,	#define MIMAX #define MJMAX #define MKMAX	65 65 129
Read-write 2 arrays : p, wrk2	static float static float	p[MIMAX][MJMAX][MKMAX]; a[4][mimax][MJMAX][MKMAX],
for(i=1 ; i <imax-1 ;="" i++)<br="">for(j=1 ; j<jmax-1 ;="" j++)<br="">for(k=1 ; k<kmax-1 ;="" k++){<="" td=""><td>static float</td><td>b [3] [M I MAX] [MJMAX] [MKMAX], c [3] [M I MAX] [MJMAX] [MKMAX] ; bind [M I MAX] [MJMAX] [MKMAX] ;</td></kmax-1></jmax-1></imax-1>	static float	b [3] [M I MAX] [MJMAX] [MKMAX], c [3] [M I MAX] [MJMAX] [MKMAX] ; bind [M I MAX] [MJMAX] [MKMAX] ;
s0 = a[0][i][j][k] * p[i+1][j]][k] + a[1][i][j][k] * p[i][j]+1][k] + a[1][i][j][k] * p[i][j]+1][k]	static float	wrki[MIMXX][MJMAX][MKMAX], wrk2[MIMAX][MJMAX][MKMAX];
+ a[[]]][][k] + p[]]]][k] + [p[i+1][j+1][k] - p[i+1] + b[0][i][j][k] + (p[i+1][j+1][k] - p[i+1] - p[i-1][j+1][k] + p[i-1]][j-1][k]][j-1][k])	
+ b[1][i][j][k] * (p[i][i+1][k+1] - p[i - p[i][j+1][k-1] + p[i + b[2][i][i][k] * (p[i+1][i][k+1] - p[i-1]][j-1][k+1]][j-1][k-1])][i][k+1]	
- p[i+1][j] [[k-1] + p[i-1] + c[0][i][[k] * p[i-1][j] [[k]]][j][k-1])	
+ c[]][]][K] * p[i][]-I][K] + c[2][i][j][K] * p[i][j][K-1] + wrk1[i][j][K];		
ss = (s0 * a[3][i][j][k] - p[i][j][k]) * bnd[wrk2[i][i][k] - p[i][i][k] + omega * ss	i][j][k];	
WINZ[]]]][N] = P[]]]][N] + OMOBA + 25, }		
} /* end n loop */		11

Shared-memory Use

1 block = 16x16x8 : A part of the Computation Domain

Boundary : Non-coal eased data access

Memory Bounded Problem

A[129][65][65] : 2.18 MB × 14 variables 12 : read only 1 : read-write 1 : write per 1 grid = 34 floating point calculations per 1 word Data transfer = 34/14 = 2.4	#define MIMAX #define MJMAX #define MKMAX static float static float static float	65 65 129 p [mimax] [mimax] [mimax] ; a [4] [mimax] [mimax] [mimax], b [3] [mimax] [mimax] [mimax] ; c [3] [mimax] [mimax] [mimax] ; b nd [mimax] [mimax] [mimax] [mimax] ; wrk1 [mimax] [mimax] [mimax] ; wrk2 [mimax] [mimax] [mimax] ;					
If GPU data transfer rate is 60 GB/sec (15 GWord/sec),							
Even if GPU is very fast 15 × 2.4 = 36.4 GFLOPS							
Without shared memory : $34/14 \rightarrow 34/(14+18) = 1.06$ 15 × 2.4 = 15.9 GFLOPS							

Parallelization using 4 GPU

Machine (Phenom Desktop PC + 4 GPU) GeForce 8800 Ultra x 4

Specifications of GPU and Motherboard

		GeForce 8800Ultra(G80) (MSI)	GeForce 8800Ultra(G80) (ELSA)
GPU	Peak Performance [GFlops]*	414.2	384
	# of SP	128	128
	SP Clock(CoreCock)[MHz]	1618(660)	1500(612)
Video Memory	Transfer Rate[GB/s]	110.4	103.68
	Memory Bus width[bit]	384	384
	Data Rate[GHz]	2.3(GDDR3)	2.16(GDDR3)
	Capacity [MB]	768	768

* 2 instruction issue

MSI K9A2 Platinum AMD 790FX + AMD SB600 4 PCI-Express x16-type slots •2 slot Support up to PCI-Express 2.0 x 16 •2 slot Support up to PCI-Express 2.0 x 8

When using 4 GPU card, it works as PCI-Express x 8 for each GPU

Poisson Equation solved by MG(Multi Grid), Red & Black method

Algorithm Acceleration

Point Jacobi ^{×4 ~ 5}→ SOR ^{×100}→ MG-SOR

Hardware Acceleration :

Two-dimensional Advection Equation Two-dimensional Advection Equation $0 \leq u$ **Frontgenesis** Most basic hyperbolic equation: J_{j-2} velocity profile: $\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} = 0$ GeForce 8800 GTS 65 GFLOPS \dot{x}_{i-2} \dot{x}_{i+1} x_{i-1} x_i (3rd-order accuracy) in time and space **Cubic Semi-Lagrangian Scheme** $f_{i}^{n+1} = F_{c}^{n}(x_{i} - u\Delta t) = a(-u\Delta t)^{3} + b(-u\Delta t)^{2} + c(-u\Delta t) + f_{i}^{n}$ $a = \frac{f_{j+1}^n - 3f_j^n + 3f_{j-1}^n - f_{j-2}^n}{6\Delta x^3} \quad b = \frac{f_{j+1}^n - 2f_j^n + f_{j-1}^n}{2\Delta x^2} \quad c = \frac{2f_{j+1}^n + 3f_j^n - 6f_{j-1}^n + f_{j-2}^n}{6\Delta x}$ 1024 × 1024

27

Two-Stream Instability in Plasma Physics

Vlasov-Poisson Equation:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{eE}{m_e} \frac{\partial f}{\partial v} = 0 \qquad \frac{\partial^2 \phi}{\partial x^2} = \frac{e(n_e - n_i)}{\varepsilon_0}$$
$$\left(E = -\frac{\partial \phi}{\partial x}, \quad n_e = \int f dv\right)$$

f : electron distribution function *n* : electron number density

CIP Method for 2-dimensional Advection Equation

120 GFLOPS using 8800GTS

Two-dimensional Burgers Equation

Incompressible Flow around a Body

Karman Vortex street behind the body depending Reynolds number

Re = 2000

Burgers Equation

Correction $\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial x} \qquad \frac{\partial v}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial y}$

Compressible CFD Application

High-accurate numerical Scheme becomes very important.

Phase Separation

Phase transition dynamics is described by the Phase Field Model.

Cahn-Hilliard equation:

$$\frac{\partial \Psi}{\partial t} = L \nabla^2 \left(\frac{\partial H}{\partial \Psi} - C \nabla^2 \Psi \right) \qquad \begin{array}{l} H: \text{ free energy} \\ \frac{\partial H}{\partial \Psi} = \tau \Psi - u \Psi^3 \end{array}$$
Discretization:
$$\frac{\partial^4 \Psi}{\partial x^4} = \frac{\Psi_{i+2,j} - 4\Psi_{i+1,j} + 6\Psi_{i,j} - 4\Psi_{i-1,j} + \Psi_{i-2,j}}{\Delta x^4} \\ \frac{\partial^4 \Psi}{\partial x^2 \partial y^2} = \left(\Psi_{i+1,j+1} - 2\Psi_{i,j+1} + \Psi_{i-1,j+1} \right) \\ -2\Psi_{i+1,j} + 4\Psi_{i,j} - 2\Psi_{i-1,j} \\ + \Psi_{i+1,j-1} - 2\Psi_{i,j-1} + \Psi_{i-1,j-1} \end{array} \right) \qquad 35$$

2-D Computation of Phase Separation

Mixture of Oil and Water:

114 GFLOPS using GTX280

