

Computational Fluid Dynamics

Takayuki Aoki

Global Scientific Information and Computing Center Tokyo Institute of Technology

Schedule (1)

2

- Classification of Partial Differential Equations
- Discretization in space and time
- Finite Difference Method
- Diffusion Equation
- Advection Equation
- Poisson Equation

Schedule (2)

3

- 1-D and 2-D Burgers Equations
- Shallow Water Equation
- Incompressible Navier-Stokes Equation
- Visualization

In XXXX, Manhattan, New York

BlueGene/L - eServer (IBM)

Power 4 × 131,072 CPU

GSIC Construction

TSUBAME Grid Cluster

- Tokyo-tech
- Supercomputer and
- **UB**iquitously
- Accessible
- Mass-storage
- Environment

TSUBAME means swallow in Japanese, Tokyo-tech symbol is swallow.

	Linp	back is used a	as a p	perform	nan	ice measure in ranking
-	GSYC	N NB	Р	Q		Time Gflops
	WR10R2R4	1334160 240	36	144		41462.22 3.818e+04
Rank 1	Site DOE/NNSA/LLNL United States	Computer BlueGene/L - eServer Blue Gene Solution TBM	Processors 131072	Year R _{max} 2005 280600	R _{peak} 367000	 N : 1.34160 NB 240 PMAP : Row-major process mu P : 36 G : 144
2	IBM Thomas J. Watson Research Center United States	BGW - eServer Blue Gene Solution IBM	40960	2005 91290	114688	
3	DOE/NNSA/LLNL United States	ASC Purple - eServer pSeries p5 575 1.9 GHz IBM	12208	2006 75760	92781	
4	NASA/Ames Research Center/NAS United States	<u>Columbia - SGI Altix 1.5 GHz,</u> <u>Voltaire Infiniband</u> SGI	10160	2004 51870	60960	
5	Commissariat a l'Energie Atomique (CEA) France	<u>Tera-10 - NovaScale 5160,</u> <u>Itanium2 1.6 GHz, Quadrics</u> Bull SA	8704	2006 42900	₀ 5705.6	 DEPTH : 1 SWAP : Mix (threshold = 240
6	<u>Sandia National Laboratories</u> United States	<u>Thunderbird - PowerEdge 1850,</u> <u>3.6 GHz, Infiniband</u> Dell	9024	07 38270	64972.8	 L1 : transposed form U : transposed form EQUIL : yes
7	<u>GSIC Center, Tokyo</u> <u>Institute of Technology</u> Japan	TSUBAME Grid Cluster - Sun Fire X64 Cluster, Opteron 2.4/2.6 GHz, Infiniband NEC/Sun	10368	2006 38180	49868.8	• ALIGN : 8 DP words 38.18 TeraFlops
8	Forschungszentrum Juelich (FZJ) Germany	JUBL - eServer Blue Gene Solution IBM	16384	2006 37330	45875	Opteron Only, 648
9	Sandia National Laboratories United States	Red Storm Cray XT3, 2.0 GHz Cray Inc.	10880	2005 36190	43520	nodes
10	<u>The Earth Simulator Center</u> Japan	Earth-Simulator NEC	5120	2002 35860	40960	 76 56% Efficiency

TSUBAME is #7 Fastest in World

High-resolution Typhoon Simulation

CReSS: Cloud Resolving Storm Simulator

Non-hydrostatic and compressible equation Terrain-following in three dimensional geometry

Prognostic variables:

- L three-dimensional velocity components
- perturbation of pressure
- perturbation of potential temperature
- subgrid-scale turbulent kinetic energy, TKE
- mixing ratios for water vapor and several hydrometeors

Cloud Physics Process

Bulk method of cold rain. Prognostic variables for mixing ratios :

water vapor
cloud water
rain water
cloud ice
snow
graupel

Typhoon Simulation #18-typhoon Sep 2004, Sever Damage in Kyushu

Calculation Conditions: Domain H-gird size V-grid size Grid numbers Integration time Micro-physics Initial condition Boundary Surface

H: 1000 km × 1000 km × V: 18 km 1000 m 200 ~ 300 m (stretched) H: 1003 × 1003 × V: 63 48 hours the bulk cold rain type JMA Regional Spectral model output JMA Regional Spectral model output real topography and observed SST 100 nodes (800 CPU)

400 m Blast wave just after explosion 5-ton TNT in Cylindrical 2-D geometry Shock Propagation on Complex Terrain 1000 10000 100000 IE+06 Shock pressure front Pressure history on the ground surface 32kg-TNT EXPLOSION ON THE GROUND

MRI Facility

Collaboration : Division of Medical Imaging, National Institute of Radiological Sciences, Ikehira Lab.

Gyroscan Intera 1.5T Philips

Bubbly Flow Simulation

- Channel Width (H) 10 mm
- Channel Length (L) 250 mm
- Mesh Size : 0.25 mm
- Mesh Number : $40 \times 40 \times 1000$
- Equal grid spacing
- Incoming Flow Velocity : 0.5 m/sec
- Wall Boundary condition: non-slip
- Periodic in the gravity direction
- Room Temperature
- No thermal process
- Initial Condition
 - -Average Void Ratio : 0.1
 - -Diameter of bubble : 2 mm
 - -Number of bubbles : 594
 - (=66 stages X 9)

Computational Methods

- Gas Liquid Unified Solver : CIP (CCUP) method
- 3-dimentional Compressible / Incompressible fluid
- Surface Tension : CFS model
- Contact angle between wall and bubbles
- Surface tracking method : improved VOF method

 $\frac{\partial \rho_{i} \phi_{i}}{\partial t} + \nabla \cdot (\rho_{i} \phi_{i} u) = 0 \qquad \qquad \frac{Du_{i}}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x_{i}} + \frac{1}{\rho} \frac{\partial \tau_{ij}}{\partial x_{j}} + g_{i} + \sigma_{i}$ $\frac{\partial \rho_{g} \phi_{g}}{\partial t} + \nabla \cdot (\rho_{g} \phi_{g} u) = 0 \qquad \qquad \frac{De}{Dt} = -\frac{p}{\rho} \frac{\partial u_{i}}{\partial x_{i}} + \frac{1}{\rho} \frac{\partial}{\partial x_{i}} \left(\lambda \frac{\partial T}{\partial x_{i}}\right) + q$ $\rho = \rho_{i} \phi_{i} + \rho_{g} \phi_{g} \qquad \phi_{i} + \phi_{g} = 1$

Ray Tracing Visualization

Navigating Ship Simulation

Moving Body interacting ocean flow, free surface

Computational Ship Hydrodynamics

Sloshing

Prof. Takehiro Himeno (Univ. of Tokyo)

Non-linear wave

Prof. F. Xiao (Tokyo Tech)

> NMRI Japan Dr. Takizawa

Simulation for Falling Leaves

Major difficulties:

- Fluid-structure interaction
- Complex shape of leaves
- Very thin structure

6

Shape of the leaf : modeled by Geometry data 200 polygons DXF or STL CAD format

Computational Mother Domain:50x50x80Computational Sub-Domain:40x40x30

Some techniques

DO Experiment

A Preliminary Simulation:

A Falling Piece of Paper for example, a Name Card

<section-header><section-header><section-header>

