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Preface 
 
 Most students who enter the Graduate School of the Tokyo Institute of Technology to major 
in nuclear engineering have not taken classes in nuclear engineering when they were 
undergraduates. With this in mind, this course “Nuclear Reactor Theory” is designed for students 
who are studying nuclear engineering for the first time.  
 This textbook is composed of two parts. Part 1 “Elements of Nuclear Reactor Theory” is 
composed of only elements but the main resource for the lecture of nuclear reactor theory, and 
should be studied as common knowledge. Much space is therefore devoted to the history of 
nuclear energy production and to nuclear physics, and the material focuses on the principles of 
energy production in nuclear reactors. However, considering the heavy workload of students, 
these subjects are presented concisely, allowing students to read quickly through this textbook.  
 However, it is not sufficient to read only this part to understand nuclear reactor theory. I 
have tried to prepare Part 2 in addition to Part 1. Part 2 “Reactor Analysis” is aimed to cover all 
areas of reactor physics and contains detailed descriptions. However, available time is not enough 
for writing all acquired contents. In another lecture “Nuclear Engineering Design Laboratory”, 
many students are solving neutron diffusion equations. Therefore, I add only “Transport Equation 
and Diffusion Equation” and “Numerical Analysis of Diffusion Equation” in Part 2. The contents 
in this Part are intended for self-studying and there is more than lectured contents. Other topics 
such as basic mathematics and time-dependent problems will be added in the future. 
 Every week, I will present a problem to be solved in the lecture. These problems are 
included in this textbook. I hope they will help in understanding the subject. 
 I hope that this textbook will stimulate the interest of students in nuclear reactor theory and 
help them to master the topic within a short period of time. 
 

Hiroshi Sekimoto 
Tokyo 

September 2007 
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(1-1) Introduction 
 
(1-1-1) Nuclear Reactor Theory and Reactor Analysis 
 
 In Part 1 “Elements of Nuclear Reactor Theory”, we study an overview of nuclear reactors 
and how nuclear energy is extracted from reactors. Here, nuclear energy means the energy 
released in nuclear fission. This occurs because of the absorption of neutrons by fissile material. 
Neutrons are released by nuclear fission, and since the number of neutrons released is sufficiently 
greater than 1, a chain reaction of nuclear fission can be established. This allows, in turn, for 
energy to be extracted from the process. The amount of extracted energy can be adjusted by 
controlling the number of neutrons. The higher the power density is raised, the greater the 
economic efficiency of the reactor. The energy is extracted usually as heat via the coolant 
circulating in the reactor core. Finding the most efficient way to extract the energy is a critical 
issue. The higher the coolant output temperature is raised, the greater the energy conversion 
efficiency of the reactor. Considerations of material temperature limits and other constraints make 
a uniform power density desirable. Ultimately, this means careful control of the neutron 
distribution. If there is an accident in a reactor system, the power output will run out of control. 
This situation is almost the same as an increase in the number of neutrons. Thus, the theory of 
nuclear reactors can be considered the study of the behavior of neutrons in a nuclear reactor. The 
behavior of neutrons in a nuclear reactor will be described in Part 2.1 “Transport Equation and 
Diffusion Equation”, which is a basis of Part 2 “Reactor Analysis”. 
 Note that the two terms used here, “nuclear reactor theory” and “reactor analysis”, are used 
to mean nearly the same thing. The terms “reactor physics” is also sometimes used. This field 
addresses the neutron transport including changes of neutron characteristics. However, with the 
development of the analysis of nuclear reactors, especially light water reactors, this field has 
taken on many facets. The scope of this textbook is not limited to light water reactors, but is 
intended to summarize the general knowledge about nuclear reactors. 
 
(1-1-2) Discovery of the Neutron, Nuclear Fission and Invention of the Nuclear Reactor 
 
 Technology generally progresses gradually by the accumulation of basic knowledge and 
technological developments. In contrast, nuclear engineering was born with the unexpected 
discovery of neutrons and nuclear fission, leading to a sudden development of the technology. 
Progress of nuclear physics and nuclear engineering is shown in Table 1.1 with some related 
topics. 
     The neutron was discovered by Chadwick in 1932. This particle had previously been 
observed by Irene and Frederic Joliot-Curie. However, they interpreted the particle as being a 
high energy γ-ray. Considering that the Joliot-Curies were excellent scientists and later received a 
Nobel Prize, it can be understood how difficult it was to predict the neutron at that time. The 
discovery of neutrons clarified the basic structure of the atomic nucleus (often referred to as 
simply the “nucleus”), which consists of protons and neutrons. At the same time, the discovery of 
neutrons provided an extremely effective technology for producing nuclear reactions. Since the 
nucleus is very small, it is necessary to bring reacting nuclei close to each other in order to cause 
a nuclear reaction. Since the nucleus has a positive charge, a very large amount of energy is 
required to bring the nuclei close enough so that a reaction can take place. However, the neutron 
has no electric charge; thus, it can easily be brought close to a nucleus. Fermi clarified the 
effectiveness of this method by carrying out numerous nuclear reactions using neutrons, for 
which he received a Nobel Prize, and discovered that many nuclei can easily react with neutrons 
if the neutrons are moderated.   
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Table 1.1  Progress in nuclear physics 
 
1808 Dalton: Atomic theory 
1876 Goldstein: Cathode rays 
1891 Stoney: Prediction of electrons 
1895 Roentgen: X-rays 
 1896 Becquerel: Radioactivity 
1897 Thomson: Cathode rays = electrons 
 1898 Rutherford: α-rays and β-rays 
1900 Planck: Quantum theory 
1905 Einstein: Special relativity theory 
 1911 Rutherford: Atomic model 
 1912 Thomson: Isotope 
   1914-1918 World War 1 
 1919 Aston: Mass spectrometer 
 1921 Harkins: Prediction of neutrons 
 1930 Bothe: Be (α, ?)  
 1932 Irene and Frederic Joliot-Curie: Be (α, γ)  
    Chadwick: Neutron discovery 
 1934 Fermi: Delayed neutrons 
    Szilard: Chain reaction  
   1939-1945 World War 2 
 1939 Hahn, Strassman, Meitner: Discovery of nuclear fission  
  1942 Fermi: CP–1 made critical 
  1944 First plutonium production reactor made critical (Hanford, USA) 
  1945 Test of atomic bomb (USA) 
  1945 Natural uranium heavy water research reactor (ZEEP) made critical (Canada) 
  1946 Fast reactor (Clementine) made critical (USA) 
  1950 Swimming pool reactor (BSR) made critical (USA) 
  1951 Experimental fast breeder reactor (EBR-1) made critical and generates power (USA) 
  1953 Test of hydrogen bomb (USSR) 
     “Atoms for Peace” Initiative (United Nations, USA) 
  1954 Launch of the nuclear submarine “Nautilus” (USA) 
     Graphite-moderated water-cooled power reactor (AM-1) generates power (USSR) 
 
 
     Nuclear fission was discovered by Hahn, Strassman, and Meitner in 1939. Fission should 
have taken place in Fermi’s experiments. The fact that Fermi did not notice this reaction indicates 
that nuclear fission is an unpredictable phenomenon. In 1942, Fermi created a critical pile after 
learning about nuclear fission and achieved a chain reaction of nuclear fission. The output power 
of the reaction was close to nil, however, this can be considered the first nuclear reactor made by 
a human being. 
     Reflecting on this history, we can understand how the discovery of the neutron and nuclear 
fission was unexpected. We can also appreciate how fast a nuclear reactor was built once these 
discoveries were made. This is very similar to the case of X-rays, where several X-ray generators 
were put on the market in the year following the discovery of X-rays by Roentgen in 1895, and 
X-rays began to be used not only in the laboratory but also for practical applications such as for 
the treatment of cancer and for hair removal. 
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     However, it is not the case that a nuclear reactor can be built simply by causing fissions by 
bombarding nuclei with neutrons. The following conditions have to be satisfied for nuclear 
fission reactions. (As it turned out, these conditions could be satisfied within one year after the 
discovery of nuclear fission.) 
① Exoergic reaction  
② Sustainable as a chain reaction 
③ Controllable 
Details of these conditions and the theory of nuclear reactors are explained in the following 
sections. Since Part I is designed to be a review, the subject is explained with as few equations as 
possible so that beginners can easily understand it. 
     It was obvious to the researchers of that time that a nuclear reaction can generate 
approximately one million times the energy of a chemical reaction. The above-mentioned first 
nuclear reactor was built by Fermi under a plutonium production project for atomic bombs. In a 
nuclear reactor, radioactive material is rapidly formed. Therefore, nuclear reactors have the 
following unique and difficult issues, which did not have to be considered for other power 
generators.  
① Safety  
② Waste  
③ Nuclear proliferation   
Solving these issues is a big problem and they will be touched on in this course. 
     The first nuclear reactor was built in the middle of World War II in the military research 
and development program known as the Manhattan Project. Its products were the atomic bombs 
using enriched uranium and plutonium. One of the reasons for this war was to secure energy 
sources. After the war, the energy problem remained a big issue. Thus, large-scale development 
of nuclear engineering was started in preparation for the exhaustion of fossil fuels.  
     Light-water reactors, which were put into practical use in nuclear submarines, were 
established in many countries. These reactors are not a solution to the energy problem, since they 
can utilize less than 1% of natural uranium. Fast reactors, on the other hand, can use almost 100% 
of natural uranium. However, after new energy resources were discovered and the depletion of 
resources became remote, the development of fast reactors, which were considered the solution to 
the energy problem at the time, met a world-wide setback. Now the problem of the global 
environment is at the fore, and nuclear engineering, which does not generate carbon dioxide, is 
being reconsidered. Although it will not be discussed in this course, it is important to keep this 
issue in the back of our minds.  
     Nuclear engineering is an excellent technology by which tremendous amounts of energy is 
generated from a small amount of fuel. In addition to power generation, numerous applications 
are expected in the future. As well as being used in energy generation, neutrons are expected to 
be widely used as a medium in nuclear reactions.  
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(1-2) Nuclear Structure and Nuclear Energy 
 
(1-2-1) Elementary Particles and Fundamental Forces 
 
     Matter was once considered to be made simply of atoms. It was soon discovered that atoms 
are made of elementary particles. Furthermore, it turned out that some elementary particles have a 
further fine structure. At present, the most fundamental particles that constitute material are those 
shown in Figure 1.1, classified into two main kinds, depending upon whether they are matter 
particles or force-carrier particles.  
 
 

    Quark 
       Matter particles        
        (fermions)    Lepton 
 
Fundamental elementary particles         Graviton 
 

    Photon 
       Force-carrier particles        
       Gauge particles     Weak boson 
        (bosons) 

    Gluon 
 

Figure 1.1 Elementary particles 
 
 

Table 1.2  Quarks and Leptons 
 
 
 
 
 
 
 
 
 
 

Table 1.3  The four kinds of forces and gauge particles 
 

Interaction Gauge particle Range of force 

Gravitational interaction   

Weak interaction   

Electromagnetic interaction   

Strong interaction   

Graviton  

Weak boson (W+, W−, Z0) 

Photon  

Gluon 

∞ 

≳ 10－18 m 

∞ 

≳ 10－15 m 

 
 

charge
2/3 u（up） c（charm） ｔ（top）

- 1/3 d（down） s（strange） b（bottom)
0 νe νμ ντ

-1 ｅ（electron） μ（muon） τ（ tau）

quark

lepton
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     Matter particles, referred to as “fermions”, have 1/2 spin, obey Fermi-Dirac statistics, and 
obey the Pauli exclusion principle. These particles are further classified into quarks, which 
constitute hadrons (elementary particles that exhibit strong interaction, such as the proton, 
neutron, and pion (π meson)) and leptons (which do not exhibit strong interaction). Specific 
members of these sub-classifications are shown in Table 1.2. Each group contains six members 
and they are symmetrical. 
     At extremely high temperatures, such as at the beginning of the universe, there is 
supposedly one force. As temperature decreases, this force is gradually differentiated into the 
present four interactions: gravitational, weak, electromagnetic, and strong interactions. As shown 
in Table 1.3, these interactions are due to respective exchange particles (referred to as gauge 
particles). These particles, referred to as “bosons”, have spin 1 and obey Bose-Einstein statistics. 
The mass of each of these particles is considered to be zero except for that of the weak boson. 
The electric charge of these particles except W+/− is zero. The gravitational and electromagnetic 
interactions are long-range forces, and their change is proportional to 1/r, where r is the 
separation. The weak and strong interactions are short-range forces. 
 
(1-2-2) Constitution of Atom and Nucleus 
 
     The constitution of an atom from elementary particles is shown in Figure 1.2. The symbols 
“u” and “d” indicate quarks, shown in Table 1.1. We can see that protons, neutrons, and electrons 
are fundamental particles in the constitution of matter. Although there are numerous elementary 
particles, the only relevant particles in our earthly life and in nuclear reactors, which we are going 
to discuss, are photons and the particles that constitute material, that is, protons, neutrons, and 
electrons. Among these, the proton and neutron have approximately the same mass. However, the 
mass of the electron is only 0.05% that of these two particles. The proton has a positive charge 
and its absolute value is the same as the electric charge of one electron (the elementary electric 
charge). The proton and neutron are called nucleons and they constitute a nucleus. An atom is 
constituted of a nucleus and electrons that circle the nucleus due to Coulomb attraction. 
 
 
  Atom   Nucleus   Proton    u 
              u 
              d 
         Neutron    u 
              d 
     Electron        d 
 

Figure 1.2  Constitution of an atom, No. 1 
 
 
     Species of atoms and nuclei are called elements and nuclides, respectively. An element is 
determined by its proton number (the number of protons). The proton number is generally called 
the atomic number and is denoted by Z. A nuclide is determined by both the proton number and 
the neutron number (the number of neutrons denoted by N). The sum of the proton number and 
neutron number, namely, the nucleon number, is called the mass number and is denoted by A 
(A=Z+N). Obviously, a nuclide can also be determined by the atomic number and mass number. 
In order to identify a nuclide, A and Z are usually added on the left side of the atomic symbol as 
superscript and subscript, respectively. For example, there are two representative nuclides for 
uranium, described as U235

92  and U238
92 . If the atomic symbol is given, the atomic number can be 
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uniquely determined; thus Z is often omitted like U235  and U238 . The chemical properties of an 
atom are determined by the atomic number, so even if the mass numbers of nuclei are different, if 
the atomic numbers are the same, their chemical properties are the same. These nuclides are 
called isotopic elements or isotopes. If the mass numbers are the same and the atomic numbers 
are different, they are called isobars. If the neutron numbers are the same, they are called isotones. 
The above examples for uranium are isotopes. Summarizing these and rewriting the constitution 
of an atom, we obtain Figure 1.3. 
 
 
  Atom   Nucleus     Proton    Atomic number (Z) 
           Neutron   Neutron number (N) 
     Electron   
          Nucleon  Mass number (A) 
 

Figure 1.3  Constitution of an atom, No. 2 
 
 
(1-2-3) Sizes of Atoms and Nuclei and Their Energy 
 
     The diameters of atoms and molecules are of the order of 10−10–10−9 m. On the other hand, 
the diameters of nuclei are small, of the order of 10−15–10−14 m. The size of molecules is often 
measured in Å (angstrom, 1 Å=10−10 m) and nm (1 nm=10−9 m). On the other hand, the size of 
nuclei is often measured in fm (femtometer, 1 fm=10−15 m). That is, the diameters of atoms and 
molecules are approximately 0.1–1 nm and the diameters of nuclei are approximately 1–10 fm. 
     Because of the uncertainty principle, a much higher energy is associated with a nucleus 
than with an atom or a molecule, as it is much smaller. Chemical reactions are measured in the 
unit of eV (where 1 eV is the energy acquired when a particle with one elementary electric charge 
is accelerated by a potential difference of 1 V in a vacuum). In contrast, the unit of MeV (1 MeV 
= 106 eV) is usually used for nuclear reactions. 
     An approximate, but rather more concrete explanation is given by the following. The n-th 
energy eigenvalue for a particle with mass m trapped inside a potential well of size L is given by 
the following equation. 
 

2)(
2

1
Lm

NE nn
hπ

=  

 
Here Nn is a constant determined by the quantum number n and ħ = 6.582×10−16 eVsec is the 
value obtained by dividing Planck’s constant by 2π. We let n = 1 and use the mass of a nucleon 
and the mass of an electron shown in Table 1.4 of Sec. (2-4). For an electron, (1/2m)(π ħ 
/L)2=3.8×10−15 eV if L=1 cm, giving a very small value. For an atom of size 0.1–1 nm, the energy 
is 38–0.38 eV. In the case of a proton, the energy is 200–2 MeV for a nucleus of size 1–10 fm. 
 
(1-2-4) Mass of a Nucleus 
 
     The mass of a proton is approximately the same as that of a neutron, whereas the mass of 
an electron is much smaller than that of a proton or neutron. As a unit for measuring the mass of 
an atom (the atomic weight), the value obtained by dividing the mass of an atom with its mass 
number is convenient (this is called the ‘atomic mass unit’ with symbol ‘amu’ or ‘u’). However, 
the sum of the masses of a proton and an electron is different from the mass of a neutron. In 
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addition, when nucleons are bound, the mass will generally decrease from the sum of the masses 
of the original nucleons (this will be explained later). Thus, it is necessary to use a specific 
standard nuclide to determine the atomic mass unit. Various nuclides have been proposed for this 
standard, but from 1962, international consensus has been to use the atomic weight of C12

6  
divided by 12 to obtain the standard 1 amu. The masses of the proton, neutron, and electron using 
this atomic mass unit are shown in Table 1.4. They are also shown in the unit of MeV/c2, which 
will be explained later. 
 
 

Table 1.4  Masses of proton, neutron, and electron. 
 
 
 
 
 
 
 
 
 
     In a nucleus, nucleons are attracted to each other by the nuclear force. Nucleons in such a 
field try to take as low an energy state as possible. That is, when separate nucleons are combined 
together, the lowest energy state is taken and the excess energy is released. This energy is called 
the binding energy. The relationship between the energy E and mass M is the following, derived 
from Einstein’s famous relativity theory: 
 

2McE =  .            (1-1) 
 
Thus, the mass of the atom is smaller than the sum of the masses of nucleons and electrons that 
constitute the atom. This difference in mass is called the mass defect, ( )NZD ,  for a nuclide with 
atomic number Z and neutron number N. For the mass of a hydrogen atom Hm  and the mass of 
a neutron Nm , the mass of a neutral atom is expressed as follows: 
 

( ) ( )NZDNmZmNZM NH ,, −+=  .       (1-2) 
 
The binding energy can be expressed as follows using Eq. (1-1): 
 

( ) ( ) 2,, cNZDNZB = .          (1-3) 
 
The binding energy is equivalent to the mass defect, with the binding energy used when energy is 
being considered and the mass defect used when mass is being considered. The unit MeV is often 
used for the energy of nuclear reactions, with mass and energy converted according to the 
following relationship: 
 

1 amu = 931.5016 MeV/c2 ,         (1-4) 
 

A term similar to the mass defect is the mass deviation (or mass excess), defined as the difference 
M−A, for M the mass in atomic mass units and A the mass number, which is an integer. It is 
important to clearly distinguish these terms. 
     Different nuclei have different mass defects. Accordingly, energy is absorbed or released 

Particle     amu MeV/c2 

Proton  
Neutron 
Electron   

1.007276 
1.008665 
0.000549 

938.280 
939.573 
0.511 
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during a nuclear reaction. In addition, it is possible to determine the possibility of a certain 
reaction occurring by the size of the mass defect. Thus, it is very important to know the mass 
defect of a nuclide. In this section we are concerned with the state with the lowest internal energy 
of the nucleus. This state is called the ground state. States with higher internal energy are called 
excited states. 
     The most important force in the nucleus is the nuclear force. The nuclear force is a strong 
interaction, generated by the exchange of pions. The distance of interaction is very short, 
approximately 2 fm, and thus only neighboring nucleons interact with each other. Therefore, the 
contribution of the nuclear force to the mass defect is proportional to the mass number. For va , a 
suitable proportionality constant, the contribution is expressed as Aav . If all the nucleons are 
surrounded by other nucleons, this expression is satisfactory. However, there are no nucleons 
outside the surface nucleons, and thus the binding energy is smaller to that extent. This is the 
so-called surface tension and is expressed as 3/2Aa s− . The second important force in a nucleus 
is the Coulomb force. Inside a nucleus, there are positive charges due to protons, but there are no 
negative charges. Therefore, a repulsive Coulomb force operates. This force exists among the 
protons. Its energy is obtained by dividing the product of the electric charges by the distance 
between them. In this case, the distance may be considered proportional to the size of the nucleus. 
If the volume of the nucleus is proportional to the mass number, the contribution of the Coulomb 
force to the mass defect is expressed as 3/12 −− AZac . If these were the only forces existing 
among nucleons, a nucleus containing only neutrons would have strong binding because of the 
absence of the Coulomb force. However, this is not consistent with experimental results. In reality, 
in a strongly bound nucleus, the proton number and the neutron number are similar. Thus, there is 
symmetry between protons and neutrons, and the closer the proton and neutron numbers, the 
more stable the nucleus is. Thus, the expression 12)( −−− AZNa I  is added to the mass 
defect. In addition to the above important terms, pairs of protons or of neutrons have a stabilizing 
property. Thus, when the proton number or the neutron number is even, the nucleus is more stable. 
This effect is expressed as 2/1),( −ANZa eδ , with the following function introduced: 
 

⎪
⎩

⎪
⎨

⎧

−
=

oddareNZbothIf
oddisAIf

evenareNZbothIf
NZ

,:1
:0

,:1
),(δ       (1-5) 

 
Weiszacker and Bethe have proposed the following emiempirical mass formula by adding these 
terms together: 
 

3/123/2),( −−−= AZaAaAaNZB csv  
   2/112 ),()( −− +−− ANZaAZNa eI δ  .  (1-6) 

 
The terms on the right side are, from the left, the volume term, surface term, coulomb term, 
symmetry term, and even-odd term. The coefficients are determined so that the mass defect is 
consistent with the experimentally determined masses. An example set of coefficients determined 
by Wapstra in 1958 is shown below:  
 

av=15.835 MeV 
as=18.33 MeV 
ac=0.714 MeV 
aI=23.20 MeV 
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ae=11.2 MeV . 
 
This equation is simple, but it nicely reproduces the experimental data, with the errors for heavy 
nuclei less than 1%. However, for a detailed analysis of nuclear reactions, more accurate values 
are often necessary. In that case, please consult reference [1]. The binding energy per nucleon and 
contribution of each term will be shown later in Fig. 1.7. 
     In the derivation of the mass formula, we notice that for suitable values of A and N there 
may be a nuclide with the greatest binding energy per nucleon, that is, the most stable nuclide. In 
fact, 56Fe has the largest binding energy per nucleon of 8.55 MeV. When A and Z depart from the 
suitable values, the binding energy decreases and the nuclide becomes unstable. When the 
binding energy is negative, the nucleus cannot exist. However, even when the binding energy is 
positive, not all nuclides can exist. There are numerous cases where a nuclide will decay to 
another nuclide with a larger binding energy. However, the number of such decays is limited and 
there are numerous nuclides in nature besides the most stable nuclides. This will be explained in a 
later section.  
     Nuclei also have a property that corresponds to the closed shells of electrons in an atom. 
Nuclei with a neutron number N or proton number Z of 2, 8, 20, 28, 50, 82, or 126 are especially 
stable compared with nuclei with numbers in the vicinity. These numbers are called magic 
numbers. They will be shown on the chart of nuclides in Fig. 1.6.    
 
(1-2-5) Nuclear Reactions  
 
     In this section, nuclear reactions are briefly explained. A nuclear reaction is generally 
described as follows:  
 

bYXa +→+  .           (1-7) 
 
Here, a is an incident particle, X is a target nucleus, Y is a residual nucleus, and b is an emitted 
particle. Reactions where no a is involved are called decays.  
     Before and after the nuclear reaction, the total energy and momentum are conserved for the 
system. From these conservation laws, restrictions apply to particle energy and direction of 
motion in the reaction. In the laboratory coordinate system, the target nucleus X is considered to 
be at rest. Thus, the following equation holds based on the energy conservation law: 
 

YbYbaXa EEcMMEcMM +++=++ 22 )()(  .     (1-8) 
 
Here, relativity theory is ignored, and Ma, MX, etc. represent the respective masses and Ea, Eb, etc. 
represent the respective kinetic energies in the laboratory coordinate system. We call the increase 
in kinetic energy due to the reaction the Q-value or the reaction energy: 
 

aYb EEEQ −+=  .          (1-9) 
 
It is clear that this also corresponds to the decrease in mass due to the reaction: 
 

[ ] 2)()( cMMMMQ YbXa +−+=   .      (1-10) 
 
From this equation, the Q-value can be obtained from only the masses of the particles involved in 
the reaction (or from the mass defect, as described in the previous section). Thus, the Q-value 
does not depend on the energy of the incident particle.  
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     The reaction equation is sometimes written by adding the Q-value to Eq. (1-7):  
 

QbYXa ++→+  .          (1-11) 
 
The Q-value can take either a positive or negative value. When it is positive, the reaction is called 
an exoergic reaction. When it is negative, the reaction is called an endoergic reaction. An 
endoergic reaction cannot take place unless the energy of the incident particle a surpasses a 
certain minimum value. This minimum value is called the threshold energy and it can be obtained 
by the following equation: 
 

X

Xa
ath M

MMQE +
−=  .        (1-12) 

 
     When the residual nucleus Y is left in an excited state, the mass of Y is larger than the mass 
of the ground state MY. If we denote this mass by MY ′, the Q-value for this reaction is expressed 
by the following equation, which is different from that for the ground state, as Q′<Q: 
 

[ ] 2)'()(' cMMMMQ YbXa +−+=  .      (1-13) 
 
In this case, the energy of the emitted particle Eb is clearly smaller. The residual nucleus Y in the 
excited state will eventually decay by some decay process. 
     In a nuclear reactor, reactions between neutrons and nuclei are important. However, I will 
explain this in detail later. In the next section, I will briefly explain the decay of nuclei and will 
then continue the explanation of the mass of a nucleus. 
 
(1-2-6) Decay of a Nucleus  
 
     The decay of a nucleus is briefly explained in this section. Typical decays are α-decay, 
β-decay, and γ-decay, which emit α-rays, β-rays, and γ-rays, respectively. An α-ray is a nucleus of 
4He, a β-ray is an electron, and a γ-ray is a high-energy photon. In β-decay, a positron may be 
emitted, which is called β+-decay. In order to distinguish the two cases, the ordinary decay in 
which an electron is emitted is sometimes called β−-decay. As a competitive process for β+-decay, 
orbital electron capture occurs when a nucleus takes in an orbital electron. As a competitive 
process for γ-decay, internal conversion occurs when an orbital electron is ejected, rather than a 
γ-ray being emitted. By α-decay, Z and N both decrease by 2. By β−-decay, Z increases by 1 and N 
decreases by 1. By β+ decay and orbital electron capture, Z decreases by 1 and N increases by 1. 
By γ-decay and the internal conversion, neither Z nor N change. 
     Some decays take place readily, while other decays rarely occur. The conservation laws for 
angular momentum, parity, etc. play a great role in this difference. However, I will omit a detailed 
explanation of this and will instead describe other important matters. 
     When a positively charged particle is emitted from a nucleus, the particle should normally 
have to overcome the potential of the Coulomb repulsive force, shown in Figure 1.4, since the 
nucleus also has a positive charge. In reality however, it is not necessary to overcome the 
potential peak, and a particle with an energy smaller than the peak energy can be emitted by the 
tunnel effect. However, the probability of this occurring rapidly decreases when the mass of the 
emitted particle becomes large or the height and thickness of the potential wall increase. 
Therefore, the emission of a heavy particle and reactions with low Q-value occur with difficulty. 
As a result, the α-particle is the only positively charged particle that is regularly emitted, and is 
generally emitted only from nuclei with large atomic numbers Z. However, α-particles can 
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occasionally be emitted from light nuclei, and a nucleus of proton or carbon may occasionally be 
emitted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4  Potential of the Coulomb repulsive force in nuclear decay. 
 
 
     In γ-decay, there is no Coulomb barrier since the emitted particle is a photon. In internal 
conversion, which competes with γ-decay, there is no barrier since the emitted particle is an 
electron, which is attracted by the nucleus. In β-decay, there is no barrier for neutrinos, since the 
interaction of a neutrino with other material can be ignored. When the other emitted particle is an 
electron, it is attracted by the nucleus, and thus there is also no barrier. In the case of a positron, 
there is a Coulomb barrier. Nevertheless, the mass of a positron is smaller than that of an 
α-particle, and thus it can easily pass through the barrier. However, in nuclides with large atomic 
numbers, β+-decay with low decay energy rarely takes place since orbital electron capture, which 
is a competitive process, dominates. Since β-decay is a weak interaction and γ-decay is an 
electromagnetic interaction, γ-decay takes place more easily than β-decay. Spontaneous fission is 
another important decay for heavy nuclei. In this case, a Coulomb repulsive force even stronger 
than for α-decay applies, and the masses of the emitted particles are large, therefore the parent 
nucleus must have a sufficiently high energy. Since the neutron has no Coulomb barrier, a neutron 
can easily jump out of a nucleus if energy permits. Although it is not appropriate to call this a 
decay, it is important in relation to the later-described delayed neutron, which accompanies 
nuclear fission. 
     The rate of decay is naturally proportional to the number of nuclides N under consideration 
and is expressed by the following equation: 
 

N
dT
dN λ−= .           (1-14) 

 
Here, the proportionality constant λ is unique to the particular nuclide and is called the decay 
constant. If we let the number of nuclides at t=0 be N0, the following solution is obtained for Eq. 
(1-14): 
 

)exp(0 tNN λ−=  .          (1-15) 

0 

Only Coulomb force is effective. 

Both nuclear force and Coulomb force are 
effective. 

r 
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The time necessary for N to become half of N0 is called the half life. From Eq. (1-15), the half life 
T1/2 can be expressed using λ in the following way: 
 

λλ
69315.02log

2/1 ==T  .         (1-16) 

 
The mean life of a nucleus τ is expressed by the following equation: 
 

∫
∞

==
00

11
λ

λτ Ndtt
N

 .        (1-17) 

 
     The capability to emit radiation is called radioactivity. Radioactive strength is expressed by 
the unit becquerel (Bq), an SI unit. One decay per second is 1 Bq. However, the traditionally used 
unit, the curie (Ci), is still frequently used. The two units are converted according to the 
following: 
 

Bq107.3Ci1 10×=  .         (1-18) 
 
(1-2-7) Distribution of Nuclides and Nuclear Fission/Nuclear Fusion  
 
     In the previous section, it is explained that three kinds of decays can easily take place. The 
decays are α-decay, β-decay, and γ-decay, but their order of likelihood is γ-decay, β-decay, 
α-decay. In γ-decay, the nucleus does not change.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5  Binding energy change in β-decay and the direction of the decay. 
 
 
     In β-decay, the next most likely decay, the mass number A does not change, but the atomic 
number Z changes. Plotting neutron number N against atomic number Z following β-decay gives 
a slope of 45°. On this line, the binding energy (mass defect) changes as shown in Figure 1.5 (See 
Eq. (1-6)). When A is odd, the last term of Eq. (1-6) becomes zero and the points representing the 
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binding energy for the respective nuclei stay on a parabolic curve. The nuclide at the highest 
point is a stable nuclide and is generally uniquely determined; nuclides with a higher Z than this 
decay by β+-decay and nuclides with the lower Z decay by β−-decay. When A is even, the last 
term of Eq. (1-6) is positive if Z is even and odd if Z is negative. Therefore, the points 
representing the binding energy of respective nuclei are alternately on either of two parabolic 
curves. Thus, there is a possibility that multiple stable nuclides exist, and these stable nuclides are 
alternately located between unstable nuclides. Nuclides may also undergo a change in A, which is 
likely to take place through α-decay; however, A should be very large in this case. As a result of 
these decays, the only naturally-occurring nuclides are those shown in Figure 1.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.6    Chart of the nuclides[2]. 

 
 
     In Figure 1.6, we can see that the curve along the stable nuclides is convex, curving 
downward at high A, because of the balance of the coulomb and symmetry terms. Therefore, 
when a heavy nuclide fissions into two nuclides of approximately equal mass, the resulting 
nuclides are unstable, having too many neutrons. In reality, two or three neutrons are emitted 
during fission and most fission products will decay by β-decay. 
     If the mass number A of naturally-occurring nuclides is plotted as the abscissa and the 
binding energy is plotted as the ordinate, Figure 1.7 is obtained. Where A is small, the surface 
term is large, and where A is large, the coulomb term is large. According to this figure, we can see 
that a nuclide with small A can fuse to a nuclide with a large binding energy and release energy. 
Similarly, a nuclide with large A can fission into nuclides with large binding energies, releasing 
energy. By nuclear fission, two fission products of approximately equal mass are generated.      
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Figure 1.7  Binding energy per nucleon and contribution of each term.[2] 
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(1-3) Neutron Nuclear Reactions 
 
(1-3-1) Neutron Reactions and Characteristics   
 
     Compared with chemical reactions, nuclear reactions are much less likely to occur. The 
first reason for this is, as described in Sec. (2-1), that a nucleus is much smaller than an atom and 
molecule, and collisions are less likely to take place. The second reason is that nuclei are 
positively charged, and thus have difficulty in approaching each other because of the repulsive 
Coulomb force. High energy is usually required to overcome the Coulomb force. Since the 
neutron has no electric charge, there is no Coulomb barrier and a high energy is not necessary. 
Moreover, when the energy is low, quantum mechanics dictates that the wavelength increases, 
and thus reactions can often take place more easily. According to de Broglie, a neutron with 
momentum p has the following wavelength:     
 

ph／=λ  .            (1-19) 
 
where, h is Planck’s constant. If we use energy instead of momentum, we obtain the following:  
 

2/1111086.2 −−×= Eλ  (m) .         (1-20) 
 

Here, eV is used as the unit of E. This energy is extremely large compared with that of a nucleus, 
as described in Sec. (2-1). For a neutron velocity v, the neutron will behave as if the size of the 
neutron is proportional to 1/v. 
     There are various neutron reactions, as shown in Figure 1.8. The important reactions are 
explained in detail below. In this figure, nuclear fission is classified as absorption even though 
neutrons are emitted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8  Neutron reactions. 
 
 
     Although a neutron inside a stable nucleus is stable, an isolated neutron changes to a proton 
by β-decay. The half life of an isolated neutron is short, only 10.37 minutes, however, this is long 
when we consider the behavior of neutrons inside a nuclear reactor. We need not consider the 
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decay of neutron during neutron transport in a nuclear reactor. 
     The types and rates of neutron reactions depend upon the nucleus under collision and the 
neutron energy. Most reactions other than elastic scattering become threshold reactions, 
mentioned in Sec. (2-5), for many nucleus. They occur when the neutron energy is more than 
about 1 MeV. The elastic scattering is isotropic for low energy scattering, but becomes 
anisotropic for higher energy. For higher energy most reactions show complicated behavior. 
Heavier nuclides also show complicated behavior. 
 
(1-3-2) Scattering of Neutrons   
 
     Scattering is a reaction in which the emitted particle is of the same kind as the incident 
particle. There are two kinds of scattering, elastic scattering and inelastic scattering. Sometimes 
any reaction other than elastic scattering is called nonelastic scattering. In the analysis of neutron 
distributions, the neutron emission reaction is important and neutron emission reactions other 
than elastic scattering are often considered together.  
     I will start with an explanation of elastic scattering. This reaction can be handled in the 
same way as elastic collisions in classical mechanics, since the kinetic energy and momentum are 
conserved. The mass of a nucleus in the units of neutron mass is expressed as A. (This number is 
close to the mass number, and therefore the same symbol is used as the mass number. Please do 
not be confused.) If we let the neutron energies before and after the collision be E and E′, the 
following equation can be obtained:   
 

[ ]CE
E μαα )1()1(

2
1'

−++=  .        (1-21) 

 
The following will hold: 
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A
Aα             (1-22) 

 
CC θμ cos=  .            (1-23) 

 
Cθ  is the scattering angle in the center-of-mass coordinate system. From Eq. (1-21), the 

following range of energy change is obtained by scattering for a neutron with an initial energy E: 
 

EEE α≧’≧  .           (1-24) 
 
Here, α is the maximum rate of energy loss due to the collision with a nucleus of mass A. The 
lighter the nucleus, the larger the energy loss by the neutron. 
     When the energy of a neutron is low (usually less than 100 keV), only elastic scattering due 
to S waves takes place, which is isotropic in the center-of-mass coordinate system. If we denote 
the probability of scattering by dμc as ( ) CC dP μμ , then we have the following: 
 

( )
2
1

=CP μ  .            (1-25) 

 
Thus, if we represent the probability for a neutron with energy E taking an energy E′ after 
scattering with a small range dE′ as P(E→E′)dE′, we have the following: 
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'  .       (1-26) 

 
The average value of ln (E/E′), which is the logarithmic value of the rate of energy change for a 
neutron with energy E, is denoted by ξ and is called the logarithmic energy decrement. From Eq. 
(1-26) we obtain the following: 
 

α
α

αξ ln
1

1
−

+=  .          (1-27) 

 
The average value of the cosines of the scattering angles in the laboratory coordinate system Lμ  
can be obtained in the following way: 
 

AL 3
2

=μ  .            (1-28) 

 
From this equation, it can be seen that for heavier nuclei, the scattering becomes isotropic in the 
laboratory coordinate system. The values α, Lμ , and ξ for some nuclei are shown in Table 1.5. 
 
 

Table 1.5   Moderation characteristics for representative nuclides by elastic scattering. 
 

 Material       A α Lμ  ξ 

Hydrogen    
Deuterium 
Helium  
Beryllium     
Carbon  
Uranium     

1 
2 
4 
9 
12 
238 

0 
0.111 
0.225 
0.640 
0.716 
0.983 

0.667 
0.333 
0.168 
0.074 
0.056 
0 

1.000 
0.725 
0.425 
0.206 
0.158 
0.0084 

 
 
     In the case of inelastic scattering, a nucleus under collision is excited and the energy of the 
scattered neutron decreases by the amount of the excitation energy. In order for excitation to 
occur, it is necessary that there be a nuclear energy level above the initial energy level by an 
amount of energy equal to the excitation energy. Generally, the heavier the nuclide, the more 
densely the levels are distributed, and thus heavier nuclides have a larger cross-section for 
inelastic scattering. 
 
(1-3-3) Nuclear Fission 
 
     As described in Sec. (2-4), the main forces operating inside a nucleus are due to the volume 
term and surface term. This causes the nucleus to behave like a liquid drop. Therefore, if energy 
is applied from the outside, oscillation modes are excited in the same way as for a liquid drop. In 
this way, a nucleus can fission into two pieces, which is the process known as nuclear fission. 
     This type of nuclear fission is observed in heavy nuclei. Among the naturally-occurring 
nuclides, only 235U can fission by thermal neutrons. If the energy of the neutrons is increased, 
238U and 232Th can fission. Nuclear fission by a thermal neutron is called thermal fission and that 
by a fast neutron is called fast fission. Thermally fissionable material is called fissile material, 
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and includes 233U, 239Pu, and 241Pu in addition to 235U. The nuclide 233U can be prepared from 
232Th, and 239Pu, and 241Pu can be prepared from 238U by neutron absorption. Material that can 
produce fissile material is called fertile material. The nuclide 252Cf can fission without being 
irradiated by neutrons, a type of nuclear fission called spontaneous fission. 
     The only naturally-occurring elements that are useful as nuclear fuel are uranium and 
thorium. Uranium of natural composition is called natural uranium. Natural uranium contains 
0.0054% 234U, 0.720% 235U, and 99.275% 238U. Natural thorium contains 100% 232Th. 
     When nuclear fission takes place, the nucleus splits into two fission fragments of 
approximately equal mass. Fission fragments are usually called fission products. The distribution 
of those mass numbers is shown in Fig. 1.9, showing results of thermal fission, for which case the 
distribution is asymmetrical. This asymmetrical distribution can be attributed to the stability of 
magic numbers, which were described in Sec. (2-2). In the case of fast fission, this asymmetrical 
distribution is not prominent. In this figure, the total yield per fission is 200%, since two fission 
products usually appear per one fission. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9  Fission product mass yield per fission induced by thermal neutrons for important 
fissile nuclides[2]. Total yield is 200%. 
 
     As seen in Fig. 1.7, approximately 1 MeV/nucleon of mass excess is reduced by nuclear 
fission. This corresponds to about 200 MeV for the total number of nucleons, which is the energy 
generated by nuclear fission. 
     If we assume that a nucleus splits into fission products of approximately equal mass by 
nuclear fission, the fission products would have too many neutrons compared with stable nuclei, 
as we can see from Fig. 1.6. Therefore, neutrons are usually generated at the time of nuclear 
fission. The number of generated neutrons increases as the energy of the colliding neutron 
increases or the mass number of the nucleus increases. When a thermal neutron is incident on 

235U, about 2.5 neutrons are generated. This enables a chain reaction, which I will describe next, 
and indicates that nuclear fission can be effective in generating energy. The energy of these 
neutrons is distributed as if the neutrons were in thermal motion in the nucleus. The distribution 
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for 235U is given by the following equation: 
 

5.0)29.2sinh()036.1exp(453.0)( EEEx −=   .       (1-29) 
 
Here, the unit of the neutron energy E is MeV. Fig. 1.10 shows the plotted distribution. Among 
fission products, there are numerous nuclides that still have too many neutrons even after 
neutron-generating nuclear fission. These nuclides generally decay by β-decay, changing into 
stable nuclides. However, some nuclides decay by emitting neutrons. In order to distinguish them, 
the neutrons emitted at the time of nuclear fission are called prompt neutrons, while the neutrons 
emitted later are called delayed neutrons. Delayed neutrons play an important role in the 
operation of nuclear reactors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10  Fission neutron energy spectrum. 
 
 
(1-3-4) Chain Reaction  
 
     Based on Fig. 1.8, neutrons behave in a nuclear reactor as shown in Fig. 1.11. If the number 
of neutrons satisfies the following equation, the number of neutrons will never change: 
 

neutrons generated by nuclear fission + neutrons increased by (n,2n), etc. 
    = absorbed neutrons + leaked neutrons   .      (1-30) 

 
This is called the critical state. However, the phenomenon is stochastic and the actual number 
constantly fluctuates. If the right side of Eq. (1-30) is larger than the left side, the number of 
neutrons will increase, which is called the supercritical state. If the right side of the equation is 
smaller than the left side, the number of neutrons will decrease, which is called the subcritical 
state. 
     In succeeding generations of a chain reaction, the ratio of the number of neutrons in one 
generation to the number of neutrons in the preceding generation is called the neutron 
multiplication factor or simply multiplication factor. The multiplication factor is usually denoted 
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by k. It is expressed as follows: 
 

 generation preceding in the neutrons ofNumber 
generation onein  neutrons ofNumber 

=k   .   (1-31) 

 
 

  
 

Figure 1.11  Neutron evolution in a nuclear reactor. 
 
 
     When a nuclear reactor can be assumed to be infinitely large and the neutron leakage is 
zero, the multiplication factor is called the infinite medium neutron multiplication factor or 
simply infinite multiplication factor, and designated by k∞. It is convenient to use k∞ to express 
the characteristics of a material. When the size of a nuclear reactor is taken into account and the 
neutron leakage is correctly handled, the multiplication factor is called the effective neutron 
multiplication factor and designated by keff. A critical state is easily expressed by keff, that is, when 
keff =1, the state is critical, when keff<1, it is subcritical, and when keff>1, it is supercritical.   
 
(1-3-5) Neutron Flux and Cross-section   
 
     When we consider a reaction of a neutron and a nucleus, the probability that the reaction 
takes place is considered to be proportional to the size of the nucleus and the distance that the 
neutron travels per unit time.  Thus, to express the quantity of neutrons, it is more convenient, as 
shown below, to use the product of the neutron number density n and the velocity v rather than to 
use the neutron number density: 
 

),,(),,( tErvntEr =φ  .          (1-32) 
 
This quantity is called the neutron flux. When the neutron flux is considered with respect to the 
energy, it is often called the neutron spectrum. The reaction rate R can be expressed using the 
neutron flux as shown below:  
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),,()(),( dEtErENtrR φσ  .       (1-33) 

 
Here, N is the density of the target nucleus and σ is a proportionality constant. Since σ is 
considered the cross-section of the target nucleus that a neutron sees, it is called the cross-section. 
Note that the cross-section is dependent on the neutron energy because the size of the reaction is 
dependent on the energy as described above. Since σ is per nucleus, it is often more specifically 
called the microscopic cross-section. The microscopic cross-section is a very small value and it is 
normally measured in the units of 1 barn=10−28 m2. Usually, σ appears as a product with N as 
shown below: 
 

NσΣ =  .            (1-34) 
 
Σ is called the macroscopic cross section. The dimension of the macroscopic cross-section is m−1 
since the dimensions of N are m−3; it does not have the dimensions of area. 
     The cross-section is defined for each reaction. The sum of the cross-sections for all 
reactions is called the total cross-section. This corresponds to the probability of collision.  
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(1-4) Nuclear Reactors and their Structures 
 
(1-4-1) Thermal Reactor 
 
     As mentioned in Sec. (3-1), for various neutron energies, reactions of different kinds and 
different sizes take place. If the energy of a neutron is lowered, its wavelike behavior and the 
reaction cross-section will increase. The amount of this increase depends upon the nuclide and 
reaction. The reaction cross-section of a thermal neutron depends significantly upon the target 
nuclide. The cross-section of 235U nuclear fission is shown in Figure 1.12. The nuclear fissions of 
233U, 239Pu, and 241Pu by thermal neutrons also have very large cross-sections. If the energy of a 
neutron is lowered to a thermal level, the achievement of criticality becomes easy. This is because 
as the neutron energy is decreased the cross-section for fission increases faster than the 
absorption cross-section of material in the reactor other than the fuel. A nuclear reactor with a 
large fission rate by thermal neutrons is called a thermal reactor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12  Fission and capture cross sections for 235U[2] 
 
 
     As shown in Fig. 1.10, neutrons generated in nuclear fission have very high energy, and 
thus it is necessary to lower the energy in a thermal reactor. In order to moderate neutrons, the 
scattering explained in Sec. (3-2) can be used. In the high energy region, inelastic scattering and 
the (n, 2n) reaction can be used effectively. When the energy is lowered, however, these 
cross-sections are lost. Therefore, elastic scattering is the only useful moderation method over the 
wide energy region required to produce thermal neutrons. The rate of energy loss by elastic 
scattering is expressed by ξ in Eq. (1-27). Light nuclides have higher values, as shown in Table 
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1.6. Thus, neutrons generated in fission collide with light nuclei and are moderated to thermal 
neutrons. Material used to moderate neutrons is called a moderator. A moderator should be a light 
nucleus, but at the same time, it should have a small neutron capture cross-section. In order to 
express the performance of the moderator the following are used: 
 

moderating power = ξΣS          (1-35) 
 

moderating ratio = ξΣS/Σa   .         (1-36) 
 
Values of these for typical moderators are shown in Table 1.6. For reference, the values for 238U 
are also shown. (238U is not a moderator, but is shown for comparison.) We can easily recognize 
differences due to the different mass numbers.  
 
 

Table 1.6  Characteristics of typical moderators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     As explained in Sec. (3-3), natural uranium contains only a small amount of fissile 235U, 
with the rest being mostly 238U. As shown in Fig. 1.13, 238U shows a very large absorption for 
neutrons at an energy of 6.67 eV. This type of absorption is called resonance absorption. We can 
see that there are also many resonance absorptions for energies higher than this. Therefore, if 
natural uranium is used as a fuel, many neutrons are absorbed by 238U and it is difficult to make 
the nuclear reactor critical. The most direct method to solve this problem is to enrich 235U. 
However, enrichment is very costly. Another good method is to allow suitable separation of fuel 
and moderator in the reactor.  
     The separation of fuel and moderator is called a heterogeneous arrangement. Inside the 
moderator, both diffusion and moderation of neutrons take place. Since the nucleus of the fuel is 
heavy, it barely moderates neutrons, and thus, inside the fuel, diffusion is the dominant neutron 
motion. If the reactor is heterogeneous, neutrons scattered in the fuel tend to have successive 
collisions inside the fuel, and neutrons scattered in the moderator tend to have successive 
collisions inside the moderator. Thus, neutrons generated by nuclear fission in the fuel are not 
moderated inside the fuel, instead they enter the moderator region and gradually lose their energy 
there by moderation. When a certain low energy is reached, most neutrons diffuse from the 
moderator region. In the energy region with large resonance absorption, neutrons diffusing from 
the moderator region to the fuel region are mostly absorbed on the surface of the fuel region, and 
thus they cannot enter the interior of the fuel region. This effect is called self-shielding. Most 
neutrons are finally moderated to thermal neutrons in the moderator region and enter the fuel 
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region after repeated diffusion. They are then absorbed by 235U. If the ratio between the fuel 
surface area and the volume is reduced by making broad fuel rods, self-shielding can greatly 
reduce resonance absorption. In light-water reactors, which are currently the most commonly 
operated reactors, neutron absorption by protons is considerable, enriched uranium is used and a 
heterogeneous arrangement is adopted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13  Cross sections for 238U. [2] 
 
 
(1-4-2) Breeder Reactors  
 
     Thermal reactors have the following problems. When the neutron energy becomes large, 
the fission cross-section increases and the capture cross-section also increases at almost the same 
rate. The number of neutrons emitted when one neutron is absorbed in the nucleus expressed as η 
is:  
 

cf

fv
σσ

σ
η

+
=   .           (1-37) 

 
Here, σf and σc are the cross-sections for fission and capture, respectively, and v is the average 
number of emitted neutrons per nuclear fission. The value η depends on the energy of the 
colliding neutrons, as shown in Fig. 1.14. For thermal neutrons, η is about 2, however, when the 
energy is more than 0.1 MeV, η increases rapidly. If many neutrons are generated in this way, not 
only can a chain reaction be maintained, but it may also be possible that there will be excess 
neutrons. If we let 238U absorb these neutrons, 239Pu can be produced, as mentioned before. That 
is, we can produce fissile material at the same time as we consume fissile material. The number 
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of newly generated fissile atoms per consumed fissile atom is called the conversion ratio. If the 
value η is sufficiently larger than 2, it is possible to obtain a conversion ratio larger than 1. Thus, 
it is possible to generate more fissile material than is consumed. This is called breeding, and the 
conversion ratio in this case is often called the breeding ratio and this type of reactor is called a 
breeder reactor. In other words fissile material can be bred using fast neutrons in a fast breeder 
reactor.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.14  η-values for important fissile nuclides. [2] 
 
 
     Looking carefully at Figure 1.14, we can see that η for 233U is larger than 2 in the region of 
thermal neutrons. Thus, it seems possible to perform breeding with thermal neutrons also. The 
nuclide 233U can be prepared from 232Th. However, since the margin of the neutron excess is very 
small in this case, ingenuity is required. A breeder reactor using thermal neutrons is called a 
thermal breeder reactor. 
 
(1-4-3) Components of Nuclear Reactors  
 
     A thermal reactor consists of a fuel element, moderator, reflector, shielding, neutron 
absorber, coolant, and structural material. In the fuel element, nuclear fuel is generally covered by 
cladding. The fuel element is located in the core of the reactor. The moderator has already been 
explained in Sec. (4-1). The reflector is placed around the core to reflect leaked neutrons back to 
the core. For the reflector, the same material as that of the moderator is generally used. The 
shielding is placed outside the reflector so that radiation does not leak from the reactor, and the 
outside is shielded against neutrons and γ-rays.  
     The neutron absorber is used at the start-up and shut-down of the reactor and also to control 
the power output. The neutron absorber is called control material and is generally used in the 
form of a control rod. With the progress of burnup, the fissile material in the fuel decreases and 
fission products accumulate, which decreases the effective neutron multiplication factor. When 
continuous operation is necessary, the fuel is usually loaded so that keff>1 and then adjusted to 
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keff=1 by inserting the neutron absorber. When the amount of fissile material has decreased and 
fission products have accumulated with the progress of burnup, some of the neutron absorber can 
be removed. Thus, the neutron absorber is also used to maintain the reactor in a critical state over 
a long term. This will be explained again later.  
     The coolant conveys the energy generated in the reactor, in the form of heat, to the outside. 
These reactor components can all be separate parts, or some of them may play several roles. For 
example, the light water (in order to distinguish normal water from heavy water, it is called light 
water) used in light-water reactors acts as moderator, reflector, and coolant. Cooling of the reactor 
is important for safety, and is also very important in extracting the energy from the reactor, as is 
done in all types of power reactors presently operated. Therefore, thermal analysis of nuclear 
reactors is a very important field and will be covered in detail in another course. 
     In a fast reactor, neutrons are used without moderation. The components of a fast reactor 
are the same as for a thermal reactor, except for the moderator. However, a region called the 
blanket is normally placed between the core and reflector. Natural uranium or depleted uranium 
from enrichment or a reprocessing plant is loaded into the blanket,. The purpose of this is to 
prepare fissile plutonium by allowing 238U to absorb neutrons that have leaked from the core. 
     Water reactors, high-temperature gas-cooled reactors, and fast reactors are presently used 
for power generation or propulsion or are close to being in actual use. An overview of these 
reactors is given in Table 1.7. 
 
 

Table 1.7  Typical Nuclear Reactors 
   
 Moderator Coolant Neutrons Breeding Purpose Status 
Water reactor 
HTGR*  
Fast reactor 

water  
graphite  
none    

water  
He 
Na 

thermal  
thermal  
fast 

no  
no  
yes 

power 
multi-purpose 
power 

practical use
development
development

*High Temperature Gas Cooled Reactor 
 
 
     Water reactors can be either light-water reactors or heavy-water reactors. The light-water 
reactor is the predominant power reactor. Light-water reactors include boiling-water reactors 
(BWR, Figure 1.15), in which the coolant is boiled in the core, and pressurized-water reactors 
(PWR, Figure 1.16), in which boiling is suppressed under high pressure. In a boiling-water 
reactor, power is generated by directly sending steam to a turbine. In a pressurized-water reactor, 
secondary cooling water is evaporated in a steam generator and the generated steam is sent to the 
turbine. Since the core in a heavy-water reactor is large, the moderator and coolant are generally 
segregated. The moderator is placed in an atmospheric vessel and the coolant is placed in a 
pressure tube. Either light water or heavy water is used as coolant. Usually, light water is used in 
the boiling-water type and heavy water is used in the pressurized-water type. 
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Figure 1.17  Boiling-water reactor (BWR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.18  Pressurized-water reactor (PWR). 
 
 

     Currently under aggressive development is the high-temperature gas-cooled reactor, in 
which graphite is used as a moderator. Helium is used as coolant and higher temperatures can be 
obtained than are possible in other reactors. The high-temperature gas-cooled reactor is 
categorized into two types by the use of different fuel: the block-fuel type and pebble-bed type. 
Fig. 1.20 shows the pebble-bed reactor, developed as small modular reactors. Other reactors in 
which graphite is used as the moderator are the Calder Hall reactor, in which carbon dioxide is 
used as coolant, and the RBMK reactor, in which water is used as coolant. However, these 
reactors are gradually disappearing. 
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Figure 1.19  High-temperature gas-cooled reactor. 
 
 
     In most fast reactors (Fig. 1.20), a liquid metal, sodium, is used as coolant so that neutrons 
are not moderated. In these reactors, steam is also eventually generated. Since the contact of 
radioactive sodium and water is dangerous, a secondary sodium loop is installed between the 
primary sodium loop and the water. To avoid sodium-water reaction, lead or lead-bismuth is 
being experimented with as coolant. Another design uses gas such as helium or carbon dioxide as 
coolant since the density of gas is small and hardly reacts with neutrons. 
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Figure 1.20  Fast breeder reactor (loop-type). 
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(1-5) Time-dependent Change of a Reactor and its Control 
 
(1-5-1) Dynamic Characteristics of a Reactor  
 
     Denoting the effective multiplication factor as keff, the number of neutrons increases by keff 
after one generation. The average length of one generation is called the prompt neutron lifetime. 
Thermal reactors, in which fission takes place after neutrons are moderated, have much longer 
lifetimes than fast reactors, in which fission takes place without moderation. Nevertheless, the 
values are very small; the lifetime in a light-water reactor is 2–6×10−5 sec, and is 0.8–2×10−7 sec 
for a fast reactor. Denoting the lifetime as l, we can express the change in the number of neutrons 
as follows:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l
k

t eff 1
exp)0()( φφ  .         (1-38) 

 
Here delayed neutrons are ignored. In the case of a slow light-water reactor of l=2×10−5 sec, the 
number of neutrons increases by a factor of 150 in 1 second, even when keff＝1.0001. In the 
control of nuclear reactors, the amount by which the multiplication factor is different from 1 is 
important. Thus, the reactivity defined below is often used:  
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k
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=ρ   .           (1-39) 

 
     For a change as rapid as mentioned above, it is impossible to control the chain reaction. In 
reality, however, the change becomes milder because of the contribution from delayed neutrons. 
Numerous kinds of fission products emit delayed neutrons, as mentioned in Secs. (2-6) and (3-3), 
and thus there are many kinds of decay constants. Normally they are handled in six groups, as 
shown in Table 1.8, where the decay constant is that of delayed neutron precursor and the yield is 
the fission product yield of the delayed neutron precursor multiplied by the delayed neutron yield 
of the precursor. 
 
 

Table 1.8  Six group representation[3] of delayed neutrons in the thermal fission of 235U. 
 

Group Decay constant Yield 
 (g)  (λg, sec-1) (βg)
1 0.0124 0.00053
2 0.0305 0.00355
3 0.111 0.00318
4 0.301 0.0064
5 1.14 0.00187
6 3.01 0.00068  

 
      
If criticality cannot be maintained without the help of delayed neutrons, the number of neutrons 
can be maintained only after the contribution from delayed neutrons. Thus, the multiplication 
time of neutrons is controlled by the decay constants of the delayed neutron precursors. 
Compared with the above-mentioned prompt neutron lifetime l, the inverse of the decay constants 
are very large (for example, 81 seconds for group 1). Thus, the variation of the neutron flux is at a 
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speed that a person can easily control. This state is called a delayed critical state. A critical state 
that is achieved only with prompt neutrons is called a prompt critical state. Since delayed neutron 
yields are generally significantly smaller than 1, it is not easy to achieve a delayed critical state 
without the possibility of a prompt critical state. However, nuclear reactors are usually designed 
to satisfy this requirement. 
     The variation of the output power becomes of the order of seconds due to delayed neutrons, 
but control is still difficult. However, nuclear reactors generally have the following characteristic. 
If the output power increases, the reactivity becomes negative and the reactor tends to decrease 
the output power. If the output power decreases, the reactivity becomes positive and the reactor 
tends to increase the output power. In other words, the output of a nuclear reactor exhibits 
negative feedback. The magnitude of the feedback can be changed over a wide range by the 
design of the nuclear reactor. If a suitable negative value is adopted, control will become easy and 
the output power will stabilize. In Japan, positive feedback is prohibited by law. I will explain 
some important types of feedback below. 
     Reactor fuel contains fissile material and fertile material. The fertile material has large 
resonance absorption, as shown in Sec. (4-1) for 238U. Because of this large absorption, the 
neutron spectrum (neutron flux) has a sharp dip at this energy. Therefore, the number of absorbed 
neutrons decreases compared to a flat neutron spectrum. This is called self-shielding. For a 
nuclear reactor, there are two important kinds of self-shielding; one was mentioned in Sec. (4-2) 
and the other is discussed here. If the output power and temperature increase, the thermal motion 
of fuel will intensify. Thus, when a neutron in motion with a constant energy E collides with a 
fuel nucleus, the energy should be modified by the thermal motion of the nucleus. This means 
that the resonance of the cross-section widens, while the area stays constant as shown in Figure 
1.23. Thus, the peak of the cross-section decreases, the self-shielding effect is reduced, and 
absorption increases. This is clearly negative feedback for 238U capture resonance, however, if the 
resonance reaction is a nuclear fission, it becomes positive feedback. This is called the Doppler 
effect. Here I explain the Doppler effect through spectral depletion by resonance reactions. It can 
also be explained though elementary neutron slowing-down history, which is also shown in Fig. 
1.21. 

 
 

 
 

Figure 1.21  Doppler effect. 
 
 

     In a thermal reactor, fission is mainly due to thermal neutrons, which are approximately in 
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thermal equilibrium with the moderator. When the output power increases and the temperature of 
the moderator increases, the energy of the thermal neutrons also increases. This is called the 
thermal neutron spectral shift. In this case, there are various important cross-sections in the 
thermal neutron region, which change in a complicated manner with changes in energy. Thus, 
how the reactivity changes is a difficult question. However, negative feedback generally results 
because the nuclear fission cross-section decreases and neutron leakage from the core increases 
due to a decrease of the total cross-section.  
     The Doppler effect is related to the fuel temperature, and the thermal neutron spectral shift 
is dependent on the moderator. When there is power fluctuation, the Doppler effect initially 
applies, and then thermal neutron spectral shift occurs.    
     In addition, feedback applies to the output power through the expansion and deformation of 
the fuel, coolant, and moderator. Feedback also occurs through changes in the pressure and the 
voiding of the coolant and moderator. Here the void effect is generally treated by the void 
coefficient. 
     It is important to pay attention to the above effects if the output power is changed during 
operation or an accident happens. How the reactor changes when the output power is changed or 
an accident occurs is called the dynamics or kinetics of the reactor. Research that does not 
consider time-dependent changes is called statics. 
 
(1-5-2) Effect of Xenon  
 
     In the preceding section, the dynamic characteristics of a reactor during a short period were 
described. When we consider the power fluctuation of a reactor over a longer period, the effect of 
xenon (135Xe) is very important. The fission product 135Xe has a large thermal neutron 
cross-section, and it greatly affects the reactivity control of the reactor.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.22  Fission products decay chain including 135Xe. 
 

 
     The nuclide 135Xe is generated in nuclear fission as shown in Fig. 1.22. If we approximate 
the effects of short-life nuclides, the change can be represented as shown in Fig. 1.23. Here γ is 
the fission product yield (yield of fission products generated per nuclear fission) and λ is the 
decay constant. The fission product yield and decay constant for 135I and 135Xe in the fission of 
235U are shown in Table 1.9. The fission product yields for other fissile materials are comparable. 
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From these results, we can see that the path for the formation of 135Xe is as follows. Initially 135I 
is formed by nuclear fission, then 135Xe is formed by β-decay of 135I with a half life of 6.58 hours.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23  Approximation of fission products decay chain including 135Xe. 
 
 

Table 1.9  Fission product yield and decay constant for 135I and 135Xe in the fission of 235U. 
 

 Fission product yield (%) Decay constant (hr-1) 

135I 
135Xe 

6.3056 
0.2427 

0.10485 
0.07634 

 
 

     This formation path essentially works as positive feedback for the reactor power output and 
is not desirable in reactor operation. That is, since the direct formation of 135Xe by fission is very 
small, if the output power increases, 135Xe will decrease because of an increase in absorption of 
neutrons, due, in turn, to an increase in the thermal neutron flux. Then, the decrease in the 
neutron absorber will increase the reactivity of the reactor and will further increase the neutron 
flux. However, this phenomenon will not continue indefinitely. The output power will ultimately 
decrease since 135I, the amount of which increases because of the increase in the output power, 
becomes 135Xe, hence increasing the amount of 135Xe. When the output power decreases, a 
similar process takes place, that is, neutron absorption by 135Xe decreases. However, the amount 
of 135Xe derived from 135I does not change much since the amount of 135I does not change rapidly. 
Therefore 135Xe increases as neutron absorption decreases, and thus the output power further 
decreases. This mechanism will generally cause a divergent oscillation in the output power.   
     When the output power is changed rapidly and to a great extent, for example, when the 
output power is rapidly decreased, 135Xe will increase since the neutron flux decreases. In order 
to keep the reactor critical, it is necessary to withdraw the control rods. If the total neutron 
absorption capability of the control rods inside the core is smaller than the neutron absorption 
capability of the accumulated 135Xe, the control rods inside the core must be completely 
withdrawn, and the reactor will then soon become subcritical. If the output power is increased 
beyond the total neutron absorption capability of the control rods, sufficient neutron absorber to 
counteract the decrease of 135Xe cannot be inserted into the core and the output power will be out 
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of control. Therefore, restrictions are generally set for the power fluctuation range. 
     135Xe works as positive feedback for the output power. Thus, it makes the output power 
unstable. However, since the half life of 135Xe is sufficiently long, a small fluctuation can be 
easily controlled with control rods. Thus, it is possible to maintain the power at a constant output. 
Even though we can maintain the power of the total core at a constant output, spatial instability 
may be caused. That is, the output power at the upper part of the core increases and that at the 
lower part of the core decreases. If this happens, the output power at the upper part of the core 
further increases and that at the lower part of the core further decreases, because of the reason 
mentioned above. Thus, despite the constant total output power, the power distribution may 
become increasingly distorted. This phenomenon is called xenon oscillation. It is not as unstable 
as the oscillation of the total core; the change is much gentler, since neutrons diffuse from regions 
of high neutron flux to regions of low neutron flux. Among the various spatial modes, modes 
with weak coupling between peaks and valleys are more unstable. Modes with one peak and one 
valley are less stable than modes with many peaks and valleys. In addition, modes in which a 
peak and a valley are separated are less stable than modes in which a peak and a valley are close 
together. In a large reactor, coupling between peaks and valleys becomes weak, and thus xenon 
oscillation can more easily take place. This type of oscillation cannot be controlled without 
well-designed control rods, and it can cause reactor accidents. Xenon oscillation is significantly 
influenced by other power feedbacks mentioned in the previous section. If the other feedbacks are 
negative, xenon oscillation can be suppressed. In the case of a BWR, negative feedback due to 
the void is large, and therefore xenon oscillation is not significant. In the case of an ordinary 
PWR, negative feedback is not large, and therefore they are equipped with special control rods 
for the control of xenon oscillation.   
 
(1-5-3) Burnup   
 
     The only naturally-occurring materials that can be used as nuclear fuel are uranium and 
thorium. The transformation of these materials in a nuclear reactor is shown in Figure 1.26. The 
letter m after the mass number shows a meta-stable state of the nucleus. Natural uranium contains 
238U and 235U as main components and thorium contains only 232Th. Here 235U is the only fissile 
material; 238U and 232Th are fertile materials. 239Pu and 241Pu are the main fissile materials 
generated from 238U, and 233U is the main fissile material from 232Th. Since the fission cross 
section for some fissile nuclides is dominantly high but not so dominant for others, the definition 
of fissile in Fig. 1.24 is not definitive. 
     Although the amount of the fertile materials 238U and 232Th decrease with the progress of 
burnup, they can be considered constant in the first approximation. The amounts of the daughter 
nuclides increase with the progress of burnup. However, all important nuclides have specific 
characteristics that lead to their eventual saturation. These characteristics are due to neutron 
absorption and decay, and the nature of the saturation value depends upon whether the decrease 
of the nuclide is due to neutron absorption or decay. For example, the decrease of 239Pu due to 
decay is considered to be zero and thus its saturation value does not depend upon the neutron flux 
level. At the neutron level of presently operated nuclear reactors, the decrease of 233Pa, which is 
generated by the neutron absorption of 232Th, is predominantly due to decay. Thus, the saturation 
value is proportional to the neutron flux level. The same can be said for fission products. The 
saturation value for 149Sm is proportional to the neutron flux level. However, when the saturation 
value is proportional to the neutron flux level at a normal output power level, it may be that the 
saturation value does not depend upon the neutron flux level if the output power increases. 
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             (a) From thorium                     (b) From uranium 
 

Figure 1.24  Actinide chain from nuclear fuel in nuclear reactor. 
 
 
     The reactivity when all control material is removed from the core is called the excess 
reactivity. Generally, the excess reactivity changes with the progress of burnup as shown in Fig. 
1.25. If the enrichment of loaded fuel increases, the initial excess reactivity becomes large and 
thus higher burnup can be achieved. Here, burnup is defined as the amount of obtained energy per 
unit fuel. However, the conversion ratio deteriorates because of decreased absorption by the 
fertile material, and fission products accumulate with the progress of burnup. Therefore, burnup 

240
Pu

6564y

239
U

23m

239
Np

2.4d
239

Pu

2.4×10
4
y

238
U

238
Np

2.1d
238

Pu

4.5×10
9
y 88y

237
U

6.8d
237

Np

2.1×10
6
y

236
U

236
Np

22h
236

Pu

2.4×10
7
y 2.9y

235
U

7.0×10
8
y

240
Pu

6564y

239
U

23m

239
Np

2.4d
239

Pu

2.4×10
4
y

238
U

238
Np

2.1d
238

Pu

4.5×10
9
y 88y

237
U

6.8d
237

Np

2.1×10
6
y

236
U

236
Np

22h
236

Pu

2.4×10
7
y 2.9y

235
U

7.0×10
8
y

244
Am

10h

243
Pu

5h

243
Am

7×10
3
y

242
Pu

242m

Am

3.7×10
5
y

241
Pu

14y
241

Am

432y

244
Am

10h

243
Pu

5h

243
Am

7×10
3
y

242
Pu

242m

Am

3.7×10
5
y

241
Pu

14y
241

Am

432y
236

U

2.4×10
7
y

235
U

7.0×10
8
y

234
Th

24d
234m

Pa 1.2m
234

U

2.5×10
5
y

233
Th

22m
233

Pa
27d

233
U

1.6×10
5
y

232
Th

232
Pa

1.3d
232

U

1.4×10
10

y 69y

231
Th

1.06d
231

Pa

3.3×10
4
y

230
Th

236
U

2.4×10
7
y

235
U

7.0×10
8
y

234
Th

24d
234m

Pa 1.2m
234

U

2.5×10
5
y

233
Th

22m
233

Pa
27d

233
U

1.6×10
5
y

232232
Th

232
Pa

1.3d
232

U

1.4×10
10

y 69y

231
Th

1.06d
231

Pa

3.3×10
4
y

230
Th

(n,γ)

(n,2n)

αdecay
βdecay

(n,γ)

(n,2n)

αdecay
βdecay

naturally abundant  nuclide

fissile material

important fissile material

naturally abundant  nuclide

fissile material

important fissile material



 37

does not greatly increase in spite of increased reactivity. Initially the excess reactivity rapidly 
decreases, as shown in the figure. This is due to the increase in the temperature and the 
accumulation of xenon. However, the curve of the excess reactivity soon becomes upwardly 
convex, the main reason for which is the saturation of the accumulation of 239Pu, which has a 
larger fission cross-section than 235U. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.25  Excess reactivity change during burnup. 
 
 

     The excess reactivity for one-batch burnup without refueling changes as shown in Fig. 1.26. 
If we separate the batch into two, the following takes place: In Fig. 1.26, we burn the fuel for a 
time t, with t1=t2=t and ρ1=ρ2. The batch that has burned more is then replaced with fresh fuel. In 
this way, the burnup is stretched up to e2, which is larger than e1. In addition, the initial excess 
reactivity of the reactor decreases from ρ0 to (ρ0+ρ1)/2. This is ideal in that we can decrease waste 
neutrons, which are absorbed by the control material. It is also an advantage for reactor safety. 
The more we increase the number of batches, the more the burnup can be improved. If the 
number of batches is infinite, the burnup can be increased up to e, at which point the two shaded 
areas in the figure become equal. Under this condition, the reactor is always critical and control 
material for burnup compensation is not necessary. Here we have assumed that the importance of 
all batches is the same (where the importance is the degree of the effect on the multiplication 
factor of the entire reactor by in situ generated neutrons). If a fuel with smaller burnup, namely, a 
fuel with larger reactivity, is located at the place where the importance is high, burnup of the fuel 
can be further increased. However, this is not desirable since the power peaking (maximum 
power density/average power density) becomes large. Instead the reverse is practiced in order to 
flatten the output power. In light-water reactors, typical of nuclear reactors, three or four batches 
are generally used, and the fuel is changed every year at the time of regular inspections. For the 
first cycle, the fuel is all new, and thus the excess reactivity becomes too large if the enrichment 
is the same for all the fuels. Therefore, in a reactor in which enriched uranium is used, the 
enrichment is changed for different batches and fuel replacement begins from the lowest 
enrichment batch. Even if the initial reactivity is adjusted to that of the equilibrium cycle by this 
method, 239Pu is accumulated in the first cycle and the time necessary for the excess reactivity to 
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become zero is longer than in the equilibrium cycle. Therefore, the first cycle is sometimes made 
longer than the later cycles. Specific properties generated in the first cycle are propagated, in 
various ways, to the later cycles and cause handling problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.26  Excess reactivity change during burnup. 
 
 

     Merely increasing the number of batches (to 3 or 4) is not satisfactory since the initial 
excess reactivity of the reactor is still rather high. Suppressing this excess reactivity only with 
control rods is not ideal from the viewpoint of safety and possible distortion of the power 
distribution. Usually, to suppress the excess reactivity, a material with a large absorption 
cross-section that decreases faster than the decrease of the reactivity is uniformly distributed so 
that a desirable power distribution is obtained in the reactor. This type of material is called 
burnable poison, examples of which are 10B and Gd. Their cross-sections are shown in Figure 
1.14. When the decrease of the reactivity is rapid, Gd with a large cross-section can be used. 
However, since the absorption cross-section of Gd has a resonance in the thermal region, it may 
give a positive temperature coefficient, and thus care should be taken in its use. Desirable 
burnable poison suppresses the excess reactivity as much as possible and is consumed at the end 
of the cycle. As shown in Fig. 1.24, the curve of the excess reactivity is a straight line or a mildly 
upwardly convex curve. However, the neutron absorber generally decreases as exp(−σa t), which 
cannot compensate the curve of the excess reactivity. Therefore, self-shielding, which was 
mentioned in Sec. (4-1), is utilized. That is, burnable poison is heterogeneously formed and 
absorption is suppressed by self-shielding at the beginning of the cycle. At the end of the cycle, 
there is no self-shielding and absorption is promoted. The curve for the decrease of burnable 
poison becomes convex downward when the number of burnable poison isotopes is increased. 
Therefore, handling is usually easier if the number of isotopes is small. Since the curve of the 
excess reactivity is different in each cycle, it is necessary to appropriately adjust the excess 
reactivity. As described later, spatial adjustment is also important. If the initial amount of poison 
is too small at a certain section, the output power of that section will become too large and the 
poison will rapidly decrease. Thus, with the progress of burnup, the design standard for the power 
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peaking may be surpassed. Precautions are therefore necessary. 
     The portion of the reactivity that cannot be compensated by the above methods is 
compensated by the control material. As control material, 10B, Hf, and Cd are used. The 
cross-sections for these materials are shown in Figure 1.14. Because of its positive temperature 
coefficient and other material issues, Cd is used as an alloy of Ag and In. 10B is mixed with iron 
or stainless steel, and is also used as compounds such as carbide. These control materials are 
normally used in the form of rods. According to the Haling principle, concerned with the 
operation method of control rods, the best operation is to keep the power distribution constant 
during a cycle. At the end of the cycle, the power distribution cannot be changed by control rods 
since all the control rods have been withdrawn. Therefore, in order to operate according to the 
Haling principle, the power distribution at the end of the cycle should be created at the start of the 
cycle and maintained during the cycle by properly using control rods. However, with a finite 
number of control rods, this is impossible. In contrast, since the excess reactivity to be suppressed 
is too large, the power peaking at the beginning of the cycle becomes a maximum (however, if 
the axis direction is also taken into account, it is generally larger when the control rods are half 
inserted). The number of control rods and the design is decided by considering how the power 
peaking can be suppressed and maintained within the reactor design limit. Thus, operation with 
control rods results in large power peaking. Therefore, in PWR and heavy-water reactors, boric 
acid is mixed into the moderator and the concentration is adjusted during the operation. In this 
way, large power peaking can be avoided since boric acid is uniformly distributed in the 
moderator.  
 
(1-5-4) Fuel Management  
 
     For acceptable power peaking, not only the control material but also the fuel arrangement 
in the reactor is very important. The type of fuel used and how it is arranged in the core are issues 
of fuel management. Since the management of the entire fuel cycle, including enrichment, 
fabrication, reprocessing, and disposal, which is separate from the reactor, is also called fuel 
management, fuel management in the present case is often specifically called in-core fuel 
management. Fuel management in the reactor depends upon the types of nuclear reactor. Here I 
will explain some characteristics of water reactors, high-temperature gas-cooled reactors, and fast 
reactors. 
     Along the direction of the coolant channel, the situation changes depending on the design 
constraint of the fuel element. In a high-temperature gas-cooled reactor, maximum center 
temperature restriction in the fuel particle is most effective. In order to satisfy this, fuel with a 
larger reactivity is arranged near the coolant channel entrance. Thus, we allow the power to 
approach an exponential distribution, taking large values near the coolant channel entrance to 
flatten the maximum fuel center temperature. On the other hand, in a water reactor in which a 
liquid is used for cooling, the easier the coolant boils, the more effective the heat flux restriction 
due to burnout. In this case, a flat power distribution is better. Even when an interaction between 
the cladding tube and fuel pellet exists and burnup restrictions apply, the power should be flat. 
However, a flat distribution is unstable under perturbations. When the fuel distribution is uniform, 
the power distribution approaches a cosine distribution and is more stable under perturbations. 
The cosine distribution flattens during fuel burnup. 
     In a reactor, a flat power distribution along the direction perpendicular to the coolant 
channel is better, since a greater output power can be obtained. In this case though, a flat 
distribution tends to be unstable. However, in the normal control rod design, control is easier 
along this direction than along the coolant channel axis. The power distribution along this 
direction is closely related to the refueling system, which varies widely depending upon reactor 
type. A light-water reactor has a small core and it is easy to reassemble the entire fuel at each 
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cycle. Therefore, there is considerable freedom in the fuel arrangement. Questions of how 
refueling should be performed throughout the life of the reactor which include multiple recycles 
and how the fuel should be arranged have been studied using simple modeling of the core by 
various methods and very complicated solutions were obtained. These results themselves cannot 
be applied as they are to actual reactors because of modeling restrictions. However, they support 
the empirical “out-in + scattering system” in which fresh fuel should be preferably placed at the 
outside of the fuel region and fuel with different burnup should be uniformly mixed and 
preferably placed inside. A mathematical method using the empirical rule is under investigation 
for application to an actual light-water reactor. 
     Since their core structures are similar, the fuel loading methods for fast reactors and 
light-water reactors are not very different. However, the fuel loading method for heavy-water 
reactors and high-temperature gas-cooled reactors are significantly different. The core size per 
unit power is much larger for heavy-water reactors and high-temperature gas-cooled reactors than 
for light-water reactors. However, refueling under operation is actively adopted for these larger 
reactors. If continuous refueling under operation is possible, neutron absorber to suppress excess 
reactivity is not necessary. Thus, the neutron economy improves and an increase in the 
conversion ratio or burnup is possible. In addition, that the core has little neutron absorber means 
that accidents due to increased reactivity by ejection of the neutron absorber from the core are 
avoidable, which is very desirable from the point of view of safety .  
 
(1-5-5) Nuclear Equilibrium State  
 
     What ultimately happens if the fuel is burnt continually with continuous supply of uranium 
or thorium and with continuous discharge of fission products?  
     As plutonium is generated from uranium by neutron absorption, if the fuel keeps absorbing 
neutrons, either nuclear fission will take place, or the atomic number of a nuclide will increase by 
β-decay since the neutron number becomes too large. Thus, nuclear fuel that has repeatedly 
absorbed neutrons without nuclear fission taking place will keep increasing its atomic number. 
However, it soon becomes a nuclide with a short α-decay life and the atomic number will then 
decrease by α-decay. By this mechanism, if fuel is left in the reactor and fresh fuel is supplied 
only for the portion of fuel lost through fission, the isotope composition of the fuel in the reactor 
reaches an equilibrium state.  
     The nuclide number densities in the equilibrium state are shown in Fig. 1.27 for a 
sodium-cooled oxide-fuel fast reactor and a light-water reactor, when natural uranium or thorium 
is loaded as fresh fuel. The nuclide number density spectrum when thorium is loaded is shifted to 
smaller atomic numbers by 2 relative to the spectrum when natural uranium is loaded. The fast 
reactor shows high densities of directly generated fissile nuclides compared with the thermal 
reactor, but they rapidly decrease as the mass number increases. Accordingly, the fast reactor is 
easily made critical and generates less higher actinides. 
     The nuclide density obtained with natural uranium supply for fast reactor shows highest 
performance of criticality, but for thermal reactor impossible to realize criticality. The thorium 
fuel supply can realize criticality for both thermal and fast reactors, but better for fast reactor. 
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Figure 1.27  Nuclide number densities in the equilibrium state 
for different neutron spectra and different loaded fuels. [4] 

 
 

(1-5-6) Fuel Cycle   
 
     So far I have described the use of fuel in a nuclear reactor. This fuel is fabricated in the 
following way. Mined uranium and thorium are processed and the uranium is sometimes enriched. 
They are then fabricated into fuel assemblies and loaded into the reactor. Spent fuel, which has 
become useless, is removed from the reactor to be reprocessed or disposed. This is called the fuel 
cycle. However, since it is outside the scope of this course, a detailed explanation will be omitted 
here. 
     Fuel removed from the nuclear reactor still contains residual uranium or newly generated 
plutonium, which can be reused as fuel. From the spent fuel, fissile material can be extracted, 
reprocessed as fuel, and used again in a nuclear reactor, a process called recycling. Spent fuel 
may be disposed as it is, and a cycle in which this is done is called a once-through cycle. 
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Introduction 
 
 In Part 1 “Elements of Nuclear Reactor Theory”, we studied an overview of nuclear 
reactors and how nuclear energy is extracted from reactors. Here, nuclear energy means the 
energy released in nuclear fission. This occurs because of the absorption of neutrons by fissile 
material. Neutrons are released by nuclear fission, and since the number of neutrons released is 
sufficiently greater than 1, a chain reaction of nuclear fission can be established. In turn, this 
allows energy to be extracted from the process. The amount of extracted energy can be adjusted 
by controlling the number of neutrons. The higher the power density is raised, the greater the 
economic efficiency of the reactor. The energy is extracted usually as heat via the coolant 
circulating in the reactor core, and finding the most efficient way to extract the energy is a critical 
issue. The higher the coolant output temperature is raised, the greater the energy conversion 
efficiency of the reactor. Considerations of material temperature limits and other constraints make 
a uniform power density desirable. Ultimately, this means careful control of the neutron 
distribution. If there is an accident in a reactor system, the power output will run out of control. 
This situation is almost the same as an increase in the number of neutrons. Thus, the theory of 
nuclear reactors can be considered the study of the behavior of neutrons in a nuclear reactor. The 
behavior of neutrons in a nuclear reactor will be described in Part 2.1 “Transport Equation and 
Diffusion Equation”, which is a basis of Part 2 “Reactor Analysis”. 
 Note that the two terms used here, “nuclear reactor theory” and “reactor analysis”, are used 
to mean nearly the same thing. The terms “reactor physics” is also sometimes used. This field 
addresses the transport, moderation (slowing-down), and diffusion of neutrons. However, with 
the development of the analysis of nuclear reactors, especially light water reactors, this field has 
taken on many facets. The treatment in this textbook is not limited to light water reactors, but is 
intended to summarize the general knowledge about neutron transport. 
 First, a formulation will be developed for neutron transport. The derivations have been 
simplified as much as possible. This presentation was chosen because we believe that it is more 
effective to derive the equations directly, without a text. 
 There are many ways to solve the equations that follow. Here, we derive the diffusion 
equation, and then we present a simple method for solving the equation analytically, along with a 
discussion of numerical solutions. Methods for finding the coefficients of the diffusion equation 
are also important, but since much space would be necessary to cover even a single method – and 
many such methods are currently employed – this topic is not addressed here. 
 Finite-difference methods including the SN method and the Monte Carlo method are used to 
solve the transport equation. These are important topics, but to save lecture time, they are also not 
treated here. In the future, we may introduce them in the lectures. 
 Time-dependent problems will be incorporated into the text once they have been organized 
from the lecture notes. 
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Part 2.1 
Transport Equation and Diffusion Equation 
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(2-1-1) Introduction 
 

It is essential to know the spatial and energy distributions of the neutrons in a field in a 
nuclear fission reactor, D–T (or D–D) fusion reactor, or other nuclear reactors populated with 
large numbers of neutrons. It is obvious why the spatial distribution should be known, and 
because neutron reactions vary widely with energy, the energy distribution is also a critical 
parameter. The neutron energy distribution is often called the neutron spectrum. The neutron 
distribution satisfies transport equation. It is usually difficult to solve this equation, and often 
approximated equation so called diffusion equation is solved instead. In Part 2.1 only overview of 
transport equation and diffusion equation of neutrons are presented, and methods for solving 
these equations are presented in the following parts. Numerical analysis of diffusion equation is 
given in Part 2.2. 
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(2-1-2) Neutron Density and Flux 
 

The neutron distribution is expressed by several quantities. The number of neutrons n in 
unit-volume at location r, moving in direction Ω per unit-solid angle with energy E at time t, or 
n(r,Ω,E,t), is called the neutron angular density. If the number of neutrons with a given energy is 
counted per unit volume, without respect to the direction of travel, the neutron density is 
obtained: 
 

∫≡
π

ΩΩ
4

),,,(),,( dtErntErn .       (2-1-1) 

 
When the neutron density is integrated across the energy range, the total neutron density is 
obtained: 
 

∫
∞

≡
0

),,(),( dEtEentrn .        (2-1-2) 

 
Both the neutron angular density and the total neutron density are sometimes simply called the 
neutron density, so the reader must take care to distinguish from the context which meaning is 
intended. 

When the neutron density in a specific direction is multiplied by the neutron speed v, the 
neutron angular flux is obtained: 
 

),,,(),,,( tErvntEr ΩΩφ ≡ .        (2-1-3) 
 
When the direction is disregarded and the neutron density is multiplied by v, the neutron flux or – 
to distinguish it from the above – the scalar neutron flux is obtained:  
 

),,(),,( tErvntEr ≡φ .         (2-1-4) 
 
This can also be defined as the sum of the neutron traces passing through a sphere of unit radius 
over a unit time. The sum of the neutron flux over all energies is called the total neutron flux: 
 

∫
∞

≡
0

),,(),( dEtErtr φφ .        (2-1-5) 

 
Note that both the neutron angular flux and the total neutron flux are often simply called the 
neutron flux, so the reader must take care with this term. The symbols φ and n are used for several 
different definitions, but note that the dimensions and values are naturally different for the 
different definitions. 
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(2-1-3) Neutron Transport Equation 
 

The neutron angular flux satisfies the neutron transport equation, which is also called the 
Boltzmann equation: 
 

),(),()(),(),(1 E,tr,ΩqE,tr,Ωr,E,tΣE,tr,ΩΩE,tr,Ω
tv t =+∇⋅+
∂
∂ φφφ .   (2-1-6) 

 
Here, ),( E,tr,Ωq  represents the neutron source and can be re-written: 
 

),()','()'(),(
0 4

E,tr,ΩS,tEr,ΩΩE,Ωr,E'ΣdΩdE'E,tr,Ωq
π

+→→= ∫ ∫
∞

φ ,    (2-1-7) 

 
where ),( E,tr,ΩS  represents an neutron source independent of the neutron flux, and is called an 
external neutron source. The first term on the right side of Eq. (2-1-7) includes contributions 
from several nuclear reactions, including neutron scattering, which the reader should bear in mind 
is not customarily called a “source”. )(r,E,tΣt  is the macroscopic total cross-section at time t, 
location r, and energy E. dEdΩΩE,Ωr,E'Σ )'( →→  represents the number of neutrons emitted 
in the small energy interval dE at E and small angular range dΩ at Ω from the reaction of the 
neutron at energy E′ and direction of motion Ω′, with )'( ΩE,Ωr,E'Σ →→  being the 
corresponding macroscopic cross-section. Rather than stating that )'( ΩE,Ωr,E'Σ →→  is 
generally a function of the two variables Ω and Ω′, it is considered a function of the following: 
 

ΩΩ'μ ⋅≡0 .            (2-1-8) 
 
In other words, 
 

)'()'( ΩE,Ωr,E'ΣΩE,Ωr,E'Σ ⋅→=→→       (2-1-9) 
 
and )'( ΩE,Ωr,E'Σ ⋅→  includes all neutron emission reactions: scattering, nuclear fission, and 
(n,2n). It can be written as the following: 
 

)'()()()'( ΩE,ΩE'pr,E'ΣE'mΩE,Ωr,E'Σ kk
k

k ⋅→=⋅→ ∑ .      (2-1-10) 

 
Here, )(Emk is the number of secondary neutrons released by reaction k. In scattering, this is 1; 
in (n,2n) reactions, it is 2; and in fission it is ν. Σk(r,E) is the macroscopic cross section for 
reaction k. The value dEdΩΩE,ΩE'pk )'( ⋅→ is the probability that the neutrons moving in 
direction Ω′ with energy E′ that cause reaction k, which produces secondary neutrons with energy 
in dE around energy E and move in dΩ around direction Ω. A good approximation for nuclear 
fission can be written as the following: 
 

)(
4
1)'( Eχ
π

ΩE,ΩE'p kk =⋅→  .         (2-1-11) 

 
Here, )(Eχk  is called the fission spectrum and expresses the energy distribution of neutrons 
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originating in nuclear fission.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1-1  Typical coordinate systems used for neutron transport equation. 
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Table 2-1-1 Forms for ∇⋅Ω  and ∫ π4

dΩ  in typical geometries. 

 
 

∇⋅Ω           ∫ π4
dΩ  

 
Infinite flat plane: （x ;μ） 

x∂
∂μ           ∫−

1

1
2 μπ d  

 
Rectangular: （x, y, z ;μ,ω） 

zyx ∂
∂

+
∂
∂

+
∂
∂ μωωη )sin(cos      ∫∫−

π
ωμ

2

0

1

1
dd  

 
Spherical (spherical symmetry): （r ;μ） 

μ
μμ

∂
∂−

+
∂
∂

rr

21         ∫−
1

1
2 μπ d  

 
Spherical (general):（r,θ,φ;μ,ω） 

φθ
ωη

θ
ωημ

∂
∂

+
∂
∂

+
∂
∂

sin
sincos

rrr
    ∫∫−

π
ωμ

2

0

1

1
dd  

ω
θωη

μ
μ

∂
∂

−
∂
∂−

+ cotsin1 2

rr
 

 
Cylindrical (infinite cylinder, axial symmetry): （r ;μ,ω） 

ω
ωηωη

∂
∂

−
∂
∂ sincos

rr
      ∫∫−

π
ωμ

2

0

1

1
dd  

 
Cylindrical (general): （r, z,φ;μ,ω） 

)(sincos
ωφ

ωημωη
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

rzr
    ∫∫−

π
ωμ

2

0

1

1
dd  

 
See Fig. 2-1 for explanation of symbols. 
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Table 2-1-1 provides specific forms for ∇⋅Ω  and ∫ π4
dΩ in the typical coordinate 

systems shown in Figure 2-1-1. 
For brevity, no explanation is given above for the derivation of Eq. (2-1-6). Several 

derivations have been formulated. In this textbook a hint for a derivation is given in Fig. 2-1-2. It 
may be clear to the reader how to proceed after considering the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1-2  Differential picture of the transport equation 
 
 

The line shows the neutron path. We choose a coordinate system s on this path to show the 
neutron position. You can derive the equation for transferring coordinate system from s to (t, r) 
easily as the following: 
 

dz
d

ds
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1  

 
If you consider the neutron balance in the differential distance ds on this path, you can derive the 
neutron transport equation. 

Equation (2-1-6) is called the differential–integral expression of the transport equation. The 
neutron transport equation can also be given in the following integral form: 
 

ds
v
stEsrqsdEsrtEr

s

t ),,,(]),(exp[),,,(
0 0

−−×′′−−= ∫ ∫
∞

ΩΩΩΣΩφ    (2-1-12) 

 
The derivation of this equation should be clear on examination of Fig. 2-1-3. 
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Figure 2-1-3 Integral picture of the transport equation 
 
 

The line also shows the neutron path. The neutron flux on the path and the coordinate of s 
is evaluated from only the neutrons on the path whose coordinate is less than s. The integral 
neutron transport equation shows this relation. 

It is less common to directly solve the integral form than the differential–integral form, but 
since the theoretical interpretation of this form is easier, it is often used for theoretical 
development and interpretation. Its employment is especially preferred for theoretical study on 
the Monte Carlo method. 

Due to the capabilities of computers, the general form of the transport equation is currently 
handled only by the Monte Carlo method. This solves the equation by numerical simulation of the 
movement of each neutron. The results are provided as statistical quantities, and hence the more 
histories taken, the smaller the statistical error in the results. The problem is obtaining statistically 
precise results in short calculation times. It is generally impossible to find ),( E,tr,Ωφ  itself with 
acceptable accuracy with this method; it is more suited for finding integrated values. 

Below, the use of methods other than Monte Carlo for solving this equation is described. 
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(2-1-4) Slowing-down of Neutrons 
 
(2-1-4-1) Continuous Energy Model 
 

The transport equation in its general form is too difficult to handle directly, so initially we 
will address just the energy variables. For a steady-state neutron distribution in a uniform, infinite 
system, the transport equation (2-1-6) takes the following form: 
 

)(')'()'()()(
0

ESdEEEEEEt +→= ∫
∞

φΣφΣ  .     (2-1-13) 

 
The energy decreases during slowing-down. When handling this circumstance, it is often 

useful to use the lethargy, which increases with neutron slowing-down, in place of energy: 
 

)/ln( 0 EEu =  .           (2-1-14) 
 
Here, E0 is a selected standard energy value. Equation (2-1-13) can be rewritten as follows using 
u: 
 

)(')'()'()()(
0

uSduuuuuut +→= ∫
∞

φφ ΣΣ  .     (2-1-15) 

 
This is a type 2 Fredholm integral equation and can be solved with a Neumann series as 

follows: 
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u
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uSu
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''')''(
)''(

)'''(
)'(

)'(
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1
LduduuS

u
uu

u
uu

u ttt Σ
Σ

Σ
Σ

Σ
  .   (2-1-16) 

 
The first term in the above is the direct contribution from the neutron source, the second term is 
the contribution from the first collisions by the neutrons, and, in general, the nth term is the 
contribution of the (n−1)th collisions. 

When a neutron has low energy (conventionally, less than 100 eV), scattering occurs by 
means of S waves, and hence is only elastic scattering and is isotropic with respect to the center 
of mass system. In this case, 
 

⎪⎩

⎪
⎨
⎧

′−=→
0

)1(
)'(

)'( E
E

EE
S

α
Σ

Σ           (2-1-17) 

 
Rewriting this in terms of lethargy, we obtain: 
 

⎪⎩

⎪
⎨
⎧

−
−′

=→
0

),'(
1

)exp(
)'( uuu

uu SΣΣ α          (2-1-18) 

 
where ΣS is the macroscopic scattering cross section and α is given by: 

for αE′ ≤ E ≤ E′ 

all other cases

for u′ ≤ u ≤ u′ + ε 

all other cases
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2

1
1
⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
A
Aα   .          (2-1-19) 

 
Here, A is the atomic mass in units of neutron mass, which is about the same as the mass number. 
ε is the maximum increase in lethargy at an elastic scattering and is given by: 
 

)/1ln( αε =             (2-1-20) 
 

For a medium composed of a single kind of atom, when elastic scattering by S waves is the 
only mechanism for slowing-down, Eq. (2-1-15) can be described by the following: 
 

∫ −
+′

−
−′

=
u

u St uSuduuuuu
ε α

φΣφΣ )(
1

)exp()'()'()(       (2-1-21) 

 
When there is no absorption, the delta function can be applied: 
 

)()( uuS δ=  
 
In this case, the solution is called the Placzec function as follows: 
 

)()()( uuuF Sp φΣ=            (2-1-22) 
 
It has a discontinuity at u = ε. The first differential coefficients have a discontinuity at u = 2ε, the 
second differential coefficients have a discontinuity where u = 3ε, and so on. When u is very 
large, it approaches a constant: 
 

ξ
φΣ 1)()()( ≒uuuF Sp =           (2-1-23) 

 
Here, ξ is the mean lethargy gained by a neutron in a single collision, and is obtained by the 
following: 
 

α
αεξ
−

−=
1

1             (2-1-24) 

 
(2-1-4-2) Multigroup Energy Model 
 

The most commonly used techniques for numerically solving Eqs. (2-1-13) and (2-1-15) 
involve digitizing the energy variables and lethargy variables. The most common of these 
techniques is the multigroup method. Let us take Eq. (2-1-15) as an example. First, the lethargy is 
divided into groups (energy groups). Equation (2-1-15) then takes the following forms: 
 

gg
g

ggggt S+= ∑ → '
'

', φΣφΣ          (2-1-25) 
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∫
−

≡ g

g

u

ug duuSS
1

)( .         (2-1-29) 

 
The group number g increases as the lethargy increases (in other words, as the energy decreases). 
ug is the lethargy value at the boundary between the gth and the (g+1)th energy groups, with the 
following: 
  

00 =u  .            (2-1-30) 
 

The value for φ(u) in Eqs. (2-1-26) through (2-1-28) has not yet been found, but it can be 
approximated mostly in good accuracy, allowing us to evaluate Σt,g and Σg′-g, which can then be 
used in Eq. (2-1-25) to solve for φg. Equation (2-1-25) is called the multigroup equation. When G 
takes a small value, it is called the few group approximation. Σt,g and Σg′-g are called group 
constants. 

When the change in cross section with neutron energy is small, there are no problems in 
solving the above equations. Generally, however, fissile and fertile nuclides have many sharp 
resonance peaks. The form of φ(u) is then strongly influenced by resonances in this cross section. 
Let us describe a typical approximation for φ(u) used when calculating the group constant in the 
resonance region. Here we need only a relative value for φ(u), rather than an absolute value. If the 
medium consists of an absorbent and a moderator, we obtain the following, which corresponds to 
Eq. (2-1-21): 
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Here, the subscripts a and m have been added to indicate the absorbent and the moderator, 
respectively. It is assumed here that the lethargy is quite large, so that there are no direct 
components from external sources. εm is also assumed to be much larger than the resonance width 
of the absorbent, so the second term on the right side of Eq. (2-1-31) can be approximated with a 
coefficient independent of u. In other words, 
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'

1
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φΣφΣΣ

ε
  .    (2-1-32) 

 
Next, let us consider two extreme cases of the resonance width of the absorbent and εa. If 

εa is much greater than the resonance width, the first term on the right side of Eq. (2-1-32) can be 
approximated as a constant independent of u: 
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mamtat SSuu +=+ )(])([ φΣΣ  .        (2-1-33) 
 
In other words, 
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)(    .        (2-1-34) 

 
This is called the narrow resonance approximation (NR approximation). Next, let us consider the 
opposite case, where εa is considerably smaller than the resonance width. Then, Σas(u)φ(u) can be 
treated as a constant for u − εa < u′ < u in Eq.(2-1-32). Accordingly, 
 

masmtat Suuuu +=+ )()()(])([ φΣφΣΣ   .       (2-1-35) 
 
In other words, 
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This is called the wide resonance approximation (WR approximation) or the infinite mass 
approximation (IM approximation).  

Between the NR approximation and the WR approximation lies the intermediate resonance 
approximation (IR approximation), between Eq. (2-1-35) and Eq. (2-1-32) and can be 
approximated as: 
 

maasmtat SSuuuu ++−=+ λφΣλφΣΣ )()()1()(])([  .     (2-1-37) 
 
In other words, 
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)(  .        (2-1-38) 

 
Here, λ = 1 corresponds to the NR approximation and λ = 0 to the WR approximation. Generally, 
λ falls somewhere between the two. It is clear from Eqs. (2-1-34), (2-1-36), and (2-1-38), that 
φ(u) takes a small value at the resonance points. Because of this, around resonance, the reaction 
rate becomes smaller than the values obtained using a constant value for φ(u). This effect is called 
self-shielding. 
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(2-1-5) Neutron Diffusion 
 
(2-1-5-1) Multigroup Transport Model 
 

This section also addresses the steady state condition. It is impossible to solve the general, 
unmodified form of Eq. (2-1-6) with currently available calculation resources. However, if the 
multigroup approach described in Section (4-2) is employed, it can be solved with the 
finite-difference approximation for simple problems: 
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g

g φ
π

 .   (2-1-39) 

 
Here, a distinction has been made between nuclear fission and other neutron-emitting reactions. 
The difference between φg(r,Ω) and φg(r) should be considered as mentioned in Section (2). If 
there is no external neutron source, a steady state exists only at a critical state. When the system 
is not at a critical state, the effective neutron multiplication factor can be introduced to handle this 
calculation. This is further explained in Section (5-2) for the multigroup diffusion model. The 
reader should be aware that the solution method explained below must be modified somewhat in 
Section (5-2). 

Generally, an initial value is assumed for φg(r,Ω) and iteration is performed in order to 
solve Eq. (2-1-39). Then, if the ith iteration of φg is written φg

(i), the following iteration formula is 
used: 
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Here, φg

(i−1) in the first term of the right side are treated as φg
(i) to make the convergence faster. It 

is common to carry out repeated computations to solve Eq. (2-1-40). These iterations are often 
called source iterations or outer iterations. See Section (5-3) for further details.  

There are two ways to handle Σs,g′→g(r,Ω′·Ω) with the variable μ0 = Ω′·Ω. One is by a 
Legendre function expansion, and the other by discretization of μ0. If Σs,g′→g(r, μ0) is expanded 
with a Legendre function, Eq. (2-1-40) can be solved for φg

(i)(r,Ω) by expanding a spherical 
harmonic series with finite terms. This is often called the PN method. Alternatively, Ω can be 
discretized to find φg

(i)(r,Ω). In this case, Σs,g′→g(r,Ω ′·Ω) can be expanded with a Legendre 
function or discretized with μ0. This method is usually called the SN method. Both the PN and the 
SN methods are handled by discretizing r. At present, the SN method is much more commonly 
used. 
 
(2-1-5-2) Multigroup Diffusion Model 
 

Commonly, the quantity of interest is an integral value with the neutron flux as a weighting 
function, such as reaction rates. For this case, even if the neutron angular flux φg(r,Ω) is unknown, 
it is sufficient to know the scalar neutron flux φg(r). When Eq. (2-1-39) is integrated over Ω, we 
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obtain the following expression: 
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where Jg(r) is a quantity known as the neutron current, defined as: 
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4
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and Σs,g′→g(r) is the following: 
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Once the relation between Jg(r) and φg(r) is known, it can be combined with Eq. (2-1-43) to 

find φg(r). Expanding φg(r,Ω) about Ω, we obtain: 
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π
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If this is expanded only to the first term and substituted into Eq. (2-1-39), multiplied by Ω, and 
integrated over Ω, we obtain: 
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where the following identities are used: 
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Table 2-1-2  Formula of Ω-integration 
 

 
 
 

The formula used for integrating over Ω is shown in Table 2-1-2. Sg(r,Ω) is generally isotropic; 
therefore, 
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0)(' =rS g  .           (2-1-50) 

 
Also, if the energy is fairly low, scattering is isentropic with respect to the center of mass system, 
resulting in: 
 

A3
2

0 =μ   .           (2-1-51) 

 
Equation (2-1-47) resembles Fick’s law for diffusion phenomena. In other words, if we 

neglect the terms relating to scattering to other exterior groups, we obtain: 
 

)()()( rrDrJ ggg φ∇−=   ,        (2-1-52) 
 
and Fick’s law is satisfied. Here, 
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Substituting Eq. (2-1-52) into Eq. (2-1-43), we obtain: 
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              (2-1-54) 
 
Here, the two self-scattering terms cancel each other. Σr,g(r) is called the removal cross-section 
and is defined by the following: 
 

)()()( ,,, rrr ggsgtgr →−≡ ΣΣΣ   .         (2-1-55) 
 
Also, the quantity: 
 

)()()( ,0,, rrr ggsgtgtr →−≡ ΣΣΣ μ          (2-1-56) 
 
is called the transport cross-section. In addition, the reciprocal of the transport cross-section is 
called the transport mean-free-path and is represented by λtr: 
 

1
, )( −≡ rgtrtr Σλ  .           (2-1-57) 

 
Using Σtr,g(r), Dg(r) can be written as follows, from Eq. (2-1-53): 
 

1
, )](3[)( −= rrD gtrg Σ  .          (2-1-58) 

 
Table 2-1-3 shows the shape of ∇·D∇ in a representative coordinate system. In contrast to the 
multigroup transport equation of Eq. (2-1-39), Eq. (2-1-54) is called the multigroup diffusion 
equation. 
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Table 2-1-3  Forms for ∇⋅∇ D  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the transport equation faithfully represents the transport of neutrons, the boundary 
conditions are clearly defined. When the system has a vacuum boundary, the neutron flux into the 
system from outside can be considered to be zero. In contrast, since the diffusion equation is an 
approximate equation, its boundary conditions are not always self-evident. A sufficient 
approximation is to require continuity of φg(r) and Jg(r) at the boundary between two adjacent 
regions. Another boundary condition is the symmetric condition that the gradient of the neutron 
flux must be zero along the centerlines. An additional condition is generally imposed at a vacuum 
boundary: φg(r) must reach zero at a distance d in the vacuum from the massive region outer 
boundary, called the extrapolation distance. This is generally written: 
 

0)( =+ dRφ   .          (2-1-59) 
 
It can also be written: 
 

ddn
d φφ

−=   .           (2-1-60) 

 
The extrapolation distance can also be formulated as follows, taking advantage of transport 
theory: 
 

trd λ7104.0=  .           (2-1-61) 
 
Here, λtr is the transport mean-free-path, as defined in Eq. (2-1-57). 

While the transport equation is used for calculations regarding shielding, control rods, and 
other components of a nuclear reactor, the diffusion equation is mainly used for the entire reactor 
core. Fuel elements are arrayed in the core, in a regular but complicated pattern. Because of this, 
calculations of the group constant must account not only for cross section change with neutron 
energy, but also for the effects of fine geometric structure. The calculations are carried out for a 
fuel cell, such as individual fuel elements and a fuel assembly, and are called cell calculations. 
The transport equation is solved in cell calculations; usually, the collision probability method is 
employed, which solves the transport equation in an integrative form, by dividing the unit cell 
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into multiple small regions.  
 
(2-1-5-3) Iterative Calculations for Neutron Sources 
 

This section describes source iteration, as mentioned in Section (5-1). As already explained, 
this is also sometimes called outer iteration, but this term is used for several different techniques, 
so the reader should take care as to which technique is being referred to. The transport equation is 
given in Eq. (2-1-40), but can be revised to resemble the diffusion equation (2-1-54): 
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              (2-1-62) 
 
The diffusion equation will be described here, but the same considerations can be applied to the 
transport equation. 

Different iterative calculation methods are used for different treatment of S(r), with S(r) 
being defined by the problem. The problem is to obtain the shape of the neutron flux for a given 
S(r). The usual procedure is to solve Eq. (2-1-62), including S(r). However, another method of 
solving the equation is presented here, in which S(r) is incorporated in the initial calculation but 
subtracted from the later iterative calculation: 
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                                                     for     1≥i   (2-1-64) 
 
Here, φg

(0) describes the distribution of the neutron flux created by the neutrons emitted by the 
source, but that have not yet caused any fissions. The neutrons released due to fissions caused by 
φg

(0) are represented by φg
(1). Accordingly, the neutrons in flux φg

(i) are those emitted due to 
fissions caused by φg

(i−1). As the value of i in φg
(i) increases, φg converges to zero in a non-critical 

system. The actual solution, i.e., the physically manifested neutron flux, is given by: 
 

( )∑
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)()(
i

i
gg rr φφ  .           (2-1-65) 

 
The term φg

(i) takes on different physical meanings between Eq. (2-1-62) and the set of Eqs. 
(2-1-63) and (2-1-64), so the reader should take care not to confuse these terms. The answer for 
Eq. (2-1-62) is: 
 

)()( )( rr gg
∞=φφ  .           (2-1-66) 

 
This method is often called power method. We will discuss about it in Sec. (2-2-2-1). 

We can solve this problem by the iteration given by Eq. (2-1-62). A set of initial guess 
values is assumed for φg

(0) and then corrected using Eq. (2-1-62), to approach the correct solution. 
Equation (2-1-62) is useful when trying to find the most accurate possible approximation, but 
otherwise, it is better to use Eqs. (2-1-63) and (2-1-64), since the physical meaning of these is 
clear. 
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When analyzing a nuclear reactor core, we are almost always analyzing a core in the 
critical condition. In this case, there are no external neutron sources, so Eq. (2-1-54) can be 
re-written as: 
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              (2-1-67) 
 
This expression sets no absolute value for φg(r), which instead is set by the selection of the power 
output. The coefficients of Eq. (2-1-67) must be chosen so the equation is exactly satisfied, 
namely the system is just in critical state, which is difficult to do. Ordinarily, an effective 
multiplication factor keff is introduced for avoiding this problem. The equation then changes as 
shown here: 
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              (2-1-68) 
 

This is usually solved by performing the following iteration: 
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              (2-1-69) 
 
Here keff is obtained from: 
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If φg

(i) is set as φg
(i−½), in analogy to the iterative calculation using Eqs. (2-1-61) and (2-1-62). Eq. 

(2-1-69) resembles the change of neutron flux between generations, starting from the source 
given by: 
 

)()()( )0(
'

'
', rrxrS g

g
gfg φΣν∑=  . 

 
Here, “generation” means those neutrons born in the preceding set of fissions that are absorbed or 
leaked by the time of the subsequent set of fissions. keff

(i) represents the ratio of the number of 
fission reactions between the ith and (i−1)th generations, thus showing whether the number of 
neutrons increases. 

Generally, in solving a criticality problem, it is not possible to match the calculation 
conditions exactly with the criticality conditions. This is problematic because the absolute value 
of the neutron flux will vary depending on the value of keff

(i). To resolve this, the neutron flux is 
normalized as: 
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where P is the total number of nuclear fissions, a constant determined by the power output. From 
Eqs. (2-1-70) and (2-1-71), we obtain the relation: 
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The following equation can then be applied: 
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which results in a neutron flux satisfying Eq. (2-1-71). 

Let us summarize the above iterative calculations: 
① An initial value of the neutron flux φg

(0) satisfying Pdrrr g
g

gf =∫∑ )()( )0(
'

'
', φΣ  is selected. 

② Iterations are performed with the following expression from i = 1 until the value converges: 
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Convergence is evaluated by keff

(i) and the norms of φg
(i)(r). 

As stated earlier, this is called an outer iteration. Sometimes, however, a further outer 
iteration is employed, adjusting the nuclide number density or other parameters in order to drive 
keff to 1. This is called a criticality search calculation. 

Let us consider a little further the scattering term in Eq. (2-1-69), that is, the third term on 
the left side. A fraction of the thermal neutrons collide with nuclei and gain kinetic energy from 
the thermal motion energy of the nuclei. However, any kinetic energy greater than the thermal 
cutoff energy is lost due to neutron scattering. Because of this effect, in such energy groups, 
Σs,g→g′

(r) in which g′ > g, becomes zero. If the fission term is non-zero, Eq. (2-1-69) can be solved 
successively from g = 1 to higher energy groups. For thermal neutron groups the same kind of 
iteration as the outer iteration is performed, although no such calculation is necessary for 
normalization with keff. These calculations allow the thermal neutron groups to be collapsed to a 
single group, thus simplifying the solution. This group is called a thermal group. 
 
(2-1-5-4) 2-Group Diffusion Model 
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The neutron energy groups other than the thermal group can be treated as a single group, 
called the fast group. These are often handled in 2-group diffusion equations. For these 
calculations, Eq. (2-1-68) is re-written: 
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Here, f(r), ηT(r), ε(r), and p(r) are parameters described by a four-factor formula. Equation 
(2-1-73) can also be written as: 
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Here, k∞(r) is the neutron multiplication factor for an infinite medium described in the previous 
section. 

The value of D1 divided by Σr,1: 
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is called the Fermi age or simply age. If the neutron energy is treated as a continuous quantity, it 
can be calculated thus: 
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Here, uT is the lethargy corresponding to thermal neutrons. For a neutron emitted from a point 
source with a lethargy of zero and then repeatedly slowed down or scattered, τ can also be written 
as: 
 

><= 2
16

1 rτ ,           (2-1-78) 

 
where <r1

2> is the mean square of the distance from the point neutron source to the position at 
which the lethargy passes uT during slow down. This value can be measured using a point source 
of fast neutrons and a thermal neutron counter. Values of τ are shown in Table 2-1-4 for typical 
moderators with some other diffusion parameters. In this table τ is given also for typical thermal 
reactors. It is known that the core volume is proportional to τ3/2 for typical thermal reactors.2) 

The square root of D2 divided by Σr,2: 
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           (2-1-79) 

 
is called the diffusion length of thermal neutrons. L2 can be stated in terms of the mean square 
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<r2
2> of the distance traveled by thermal neutrons from the source to the absorption site: 

 

><= 2
2
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6
1 rL  .          (2-1-80) 

 
Like τ, this quantity can be measured using a thermal neutron source and a thermal neutron 
detector, but it is difficult to obtain a point source of neutrons. Exponential experiments and/or 
pulse experiments are performed instead. 
 
 

Table 2-1-4  Diffusion parameters for some common moderators1) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us consider a simple case in which the coefficients in Eqs. (2-1-74) and (2-1-75) do not 
depend on r. Those expressions can then be written as follows: 
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It is clear that these solutions satisfy the following expression: 
 

0)()( 22 =+∇ rBr gGg φφ  .         (2-1-83) 
 
Here, BG

2 is a quantity called geometrical buckling, an eigenvalue determined by satisfying 
certain boundary conditions. Let us assume that the differences in Eq. (2-1-83) between Group 1 
and Group 2 can be neglected, so that BG

2 is the same in both groups. Table 2-1-5 shows the 
geometrical buckling that occurs in typical core shapes and the corresponding neutron flux 
distribution.  
 

Moderator Density D Σa L τ M 
(reactor type) g/cm 3 cm cm-1 cm cm2 cm 
H 2O 1.00 0.16 2.0E-02 2.85 26 5.84 
D 2O 1.10 0.87 2.9E-05 170 131 170
Be 1.85 0.50 1.0E-03 21 102 23 
Graphite 1.60 0.84 2.4E-04 59 368 62 
PWR 1.8 40 6.6 
BWR 2.2 50 7.3 
HTGR 12.0 300 21 
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Table 2-1-5  Geometrical buckling and flux profile 

 

       J0  is the zero-th order Bessel function. 
 
 

Substituting Eq. (2-1-83) into Eqs. (2-1-81) and (2-1-82), we obtain: 
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Since both expressions must be satisfied simultaneously, the following must be satisfied: 
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In examining this equation, it is clear that τBG

2 represents the fraction of fast neutrons leaking 
from the system and L2BG

2 represents the fraction of thermal neutrons leaking from a thermal 
system. The fractions are generally small, and thus Eq. (2-1-86) changes form as follows: 
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Here, M2 is called the migration area and is defined by: 
 

22 LM +=τ    .          (2-1-88) 
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At criticality, keff = 1, so from Eq. (2-1-87), 
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Under non-critical conditions, from 
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we define the material buckling as: 
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Then, the critical condition can be rewritten as: 
 

22
GM BB =  .            (2-1-92) 

 
At sub-critical conditions, keff is introduced to obtain non-zero solutions. In sub-critical systems 
containing neutron sources, keff = 1 must be substituted in Eqs. (2-1-81) and (2-1-82). We assume 
that the relative spatial distributions of φ1(r) and φ2(r) are identical and make the same 
transformations as previously used in this chapter, obtaining: 
 

0)()( 22 =+∇ rBr gMg φφ           (2-1-93) 
 
for any time and position, where the external neutron source does not exist. In this case, there is 
an external neutron source sustaining the neutron flux and the reader should be aware that the 
conditions here differ from criticality. It should be clear from this equation that material buckling 
can be measured in exponential experiments and pulse experiments. Here reactor physics 
experiments are out of scope, and their discussion are omitted. 
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Part 2-2 
Numerical Analysis of Diffusion Equation 
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(2-2-1) Discretization of Diffusion Equation 
 

We start the numerical analysis of diffusion equation with discretization of multigroup 
diffusion equation, which is given by Eq. (2-1-54) for an external source problem and Eq. 
(2-1-68) for a criticality problem. The derived equation from diffusion equation is called 
difference equation. The space is discretized into small enough elements. This element is called 
mesh. A value of neutron flux is chosen for each mesh. This procedure makes a continuous 
function of space variable into a set of discrete values. The balance of neutron flux expressed 
originally by integro-differential equation is changed into a difference equation, which is 
equivalent to a matrix equation. The matrix equation is usually much easier to be treated by 
computer than the function equation. This is a principle of discretization method. 

Boundaries of regions should usually be chosen of the boundaries of meshes. The most 
popular discretization method for multidimensional case is to discretize each coordinate and 
construct each space mesh surrounded by these discretized coordinates. The value of neutron flux 
for each mesh may be chosen by several methods, but here we choose the value at the center of 
mesh. The definition of center is not so rigid, since we are treating it approximately. We may 
often consider this value as some average value in this mesh.  

The derivation of the difference equation from the diffusion equation is straight forward 
and relatively easy except for the diffusion term, which is a second order differential term. Here 
we mostly discuss the treatment of the diffusion term. The other terms are products of neutron 
fluxes and their corresponding coefficients. They should be transformed to the product of an 
averaged neutron flux in each mesh and a proper coefficient, which is estimated to give the value 
of integrated product in the mesh. If the cell is one material, the process is easy. However, in 
many cases, the mesh consists of many components such as fuel pellet, cladding, coolant and 
others, and calculating coefficients becomes a complicated procedure. In this case the mesh is 
often called cell. This process is called cell calculation. We have omitted this part from this 
textbook. 

Next, we describe the treatment of the diffusion term. We shall not consider the energy 
variable in the mean time, and omit the suffix of the energy group in the equations. The diffusion 
term of the one-dimensional diffusion equation is written as: 
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where p is chosen for the corresponding geometry as follows: 
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p   . 

 
Even for a multidimensional case, the diffusion term can be expressed by combining the terms 
given by Eq. (2-2-1), since angular coordinates are seldom used. 
 In the following, the discretization of Eq. (2-2-1) is described. Usually two methods can be 
considered. One is the direct mathematical derivation of the difference equation from the 
differential equation, and the other is the physical derivation by considering the material balance 
in the mesh. Generally the latter method gives a more accurate expression of coefficients. Here 
we will employ the latter method and derive the difference equation for Eq. (2-2-1). We will not 
consider the original diffusion equation directly, but the equation multiplied by rp. We assume in 
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each mesh a proper value is given for each parameter such as a macroscopic cross-section and a 
diffusion coefficient. Each boundary of the region should be chosen as a boundary of mesh.  
 At the beginning each space coordinate r is divided into K meshes. We will consider the 
neutron balance in the k-th mesh, which is called k-mesh. The left and right edges of the mesh are 
denoted by 2/1−kr  and 2/1+kr , respectively, and the mesh width is denoted by krΔ . The diffusion 
term represents the balance between coming-in neutron current at 2/1−= krr  and going-out 
current at 2/1+= krr , namely: 
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where the second term in the right hand side is the reciprocal of mesh volume.  
 The neutron current at 2/1−= krr  is estimated by using the diffusion approximation as: 
 

 2/12/1 −− −= kk dr
dDJ ｜
φ .           (2-2-3) 

 
Now we try to change differential to difference. Several methods may be considered for this 
discretization. Here we consider the neutron current from (k-1)-mesh to this boundary. It can be 
estimated as:  
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By using the same method, the current to (k+1)-mesh from this boundary can be estimated as: 
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From the continuity of the neutron current, these two quantities are equal and considered the 
current at this point, 2/1−kJ : 
 
 2/12/12/1 −+−−− == kkk JJJ  .          (2-2-6) 
 
By eliminating 2/1−kφ  from Eqs. (2-2-4) through (2-2-6) the following equation is given for 

2/1−kJ :  
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The equation for 2/1+kJ  is also given by the similar way as: 
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By substituting (2-2-7) and (2-2-8) into Eqs. (2-2-2):  
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 kkk ecd −−= −1'  .           (2-2-12) 
 
 We will now consider the boundary conditions. For cylindrical and spherical coordinate 
systems, the neutron current should be zero at the center. This condition is automatically satisfied 
by Eq. (2-2-10) as: 
 
 00 =c .             (2-2-13) 
 
Hence, 0φ , which is the value at imaginary position, disappears in Eq. (2-2-9). An additional 
equation is not necessary for the boundary condition at the center.  
 Here we should note that the suffix at the central position is not 0 but 1/2. We choose an 
integer for each mesh, and half integer at each boundary. The mesh adjacent to the center usually 
takes the mesh number of 1. This numbering system is convenient when the whole system of 
equation is expressed by the matrix system.  
 The vacuum boundary condition is given by Eq. (2-1-59) by using the extrapolation 
distance d. This condition can be employed in the system of equations (2-2-9) by modifying the 
equation for Ke  as:  
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KD ｜･ φ∇∇− is given by: 
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 KKKKK dcD φφφ '11 +=∇∇− −−｜･  .        (2-2-15) 
 
 Next we may have to mention about 2- and 3- dimensional space, but rush to expression of 
difference equation form of multi-group neutron diffusion equation in matrix form, and will later 
mention about higher dimensional cases.   
 The neutron flux in space mesh k and energy group g is denoted by gk ,φ , and the whole 
neutron flux is denoted by vector φ . The order of gk ,φ  in φ  is as follows: 
 
 1,1φ , 1,2φ , …, 1,Kφ , 2,1φ , 2,1φ , …, 2,1φ , …, g,1φ , g,2φ , …, gK ,φ ,…, G,1φ , G,2φ , …, GK ,φ . 
 
Here the k changes first. The suffixes K and G are total space mesh number and total energy 
group number, respectively. This method changes the multi-group diffusion equation (2-2-68) as 
the following matrix equation: 
 

 φφ M
k

T
eff

1
=  ,            (2-2-16) 

 
where T and M are matrixes, whose structures are given in the following. 
 The matrix T is separated into two matrixes A and S as: 
 

 SAT −=  ,            (2-2-17) 
 
where matrix A correspond to the first and second terms of Eq. (2-2-68) and matrix S to the third 
term of the same equation. They are given by the following equations using element matrixes gA  
and ggS ,' : 
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 ,      (2-2-19) 

 
where we assume up-scattering does not happen. If the thermal energy region consists of several 
energy groups, up-scattering should be considered. For this kind of case, some elements in the 
upper right of S will take some values other than zero. The element matrix gA  is a tri-diagonal 
matrix and given by: 
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where the suffix g is omitted in every element of this matrix. The elements kc  and ke  are 
given by Eqs. (2-2-10) and (2-2-11), and kd  is given by:  
 
 gkrkk dd ,,' Σ+=             (2-2-21) 
 
using kd '  given by Eq. (2-2-12), where gkr ,,Σ  is the removal cross section in the space mesh k 
and energy group g. The element matrix ggS ,'  is a diagonal matrix whose size is K. The element 
of this matrix is the scattering matrix  ggksΣ →',,  from energy group g’ to g in space mesh k.  
For definition of each cross section, see Eq. (2-1-68). 
 The matrix M in Eq. (2-2-16) corresponds to the fission term and can be expressed as a 
product of two matrixes as: 
 
 TXFM =  ,            (2-2-22) 
 
where matrixes X and F are column matrixes whose element matrixes are given as: 
 
 ( )TGg XXXX ,,,,1 ････=  ,          (2-2-23) 
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 ( )TGg FFFF ,,,,1 ････=  ,          (2-2-24) 
 
where matrixes Xg and Fg are square matrixes, whose sizes are K, and diagonal matrixes. The 
fission neutron spectrum gχ  can be assumed independent from the induced neutron energy and 
target nucleus and gΧ  can be written as: 
 
 EΧ gg χ=   ,            (2-2-25) 
 
where E is a unit matrix. The k-th element of Fg is gf,kνΣ , . 
 For a one-dimensional case, the matrix Ag becomes a tri-diagonal matrix. Here, the form of 
matrix Ag for multi-dimensional cases is explained. In the reactor analysis, almost all coordinate 
systems are rectangular, cylindrical or spherical (See Fig. 2-1-1, Table 2-1-3), and any other 
coordinate systems are rarely taken. Furthermore the φ -variable in cylindrical coordinates and 
φ - and θ -variable in spherical coordinates (Table 2-1-3) are rarely employed. Here we consider 
only (x, y, z) and (r, z) type coordinate systems.  
 For these coordinate systems, we start discretization process by discretizing each coordinate 
and setting mesh defined by the set of discretized coordinates. The neutron flux for 2- or 
3-dimensional geometry is written as lk ,φ  or mlk ,,φ . In the same way as the one-dimensional case, 

lkD ,｜･ φ∇∇−  and mlkD ,,｜･ φ∇∇−  are expressed by using the adjacent fluxes. For a 
two-dimensional case: 
 
 lklklklklklklklklklklklklklklklk aaaaaD ,1,1;,,1,1;,1,1,;,1,1,;,,,;,, ' ++−−++−− ++++=∇∇− φφφφφφ｜･  . (2-2-26) 
 
and for three-dimensional case: 
 
 1,,1,,;,,1,,1,,;,,,,,,;,,,, ' ++−− ++=∇∇− mlkmlkmlkmlkmlkmlkmlkmlkmlkmlk aaaD φφφφ｜･  
  mlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlk aaaa ,,1,,1;,,,,1,,1;,,,1,,1,;,,,1,,1,;,, ++−−++−− ++++ φφφφ  . (2-2-27) 
 
The coefficients satisfy the following equations: 
 
 lklklklklklklklklklk aaaaa ,1;,,1;,1,;,1,;,,;,' +−+− −−−−=        (2-2-28) 
 
 mlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlkmlk aaaaaaa ,,1;,,,,1;,,,1,;,,,1,;,,1,,;,,1,,;,,,,;,,' +−+−+− −−−−−−=  . 
               (2-2-29) 
 
Firstly k is changed, then l and m are changed, and finally g is changed. The vector of flux, φ , 
satisfies Eq. (2-2-16) through (2-2-19), but the element matrix Ag becomes a matrix whose 
structure is shown in the following. For a two-dimensional case, it becomes a tri-diagonal block 
matrix. 
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where the element matrix Al,l-1 is a diagonal matrix whose element is ak,l;k,l-1 and size is K, Al,l+1 is 
a diagonal matrix whose element is ak,l;k,l+1 and size is K, and Al,l is a tri-diagonal matrix as shown 
below: 
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For a three-dimensional case, the scalar element in the matrix for a two-dimensional case 
becomes a matrix. The diagonal elements of a tri-diagonal matrix become tri-diagonal, and 
nondiagonal element matrixes in the tri-diagonal matrix and diagonal element matrixes of the 
diagonal matrix become diagonal.  
 When we solve Eq. (2-2-16), characteristics of the matrix Ag are important. Here, we note 
several important characteristics of Ag. It is a tri-diagonal matrix as already mentioned. As Eqs. 
(2-2-10) through (2-2-12) and (2-2-21) show, the diagonal elements are all positive, and 
nondiagonal elements are all negative. The absolute value of diagonal element is more than the 
sum of all absolute values of nondiagonal elements in the same row. This characteristic is called a 
diagonal dominant.  
 In the previous descriptions, the way of defining meshes starts from discretizing each 
coordinate which is orthogonal to any other coordinate. This is the most popular way, but other 
ways are also possible. A hexagonal arrangement is often used for a dense configuration of fuel 
pins. For this arrangement, triangular mesh is usually employed. The matrix Ag can be derived by 
the similar way described above. The triangular mesh leads to a hexa-diagonal matrix, which is 
also diagonal dominant. 
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(2-2-2) Solution of Diffusion Equation 
 
(2-2-2-1) Power Method for Outer Iteration 
 
 By introducing discretization approximation to the multigroup diffusion equation (2-1-68), 
the following matrix equation (2-2-16) is obtained: 
 

 φφ M
k

T
eff

1
=  .            (2-2-32) 

 
This is apparently an eigenvalue equation, and effk  is an eigenvalue and φ  is an eigenvector. 
By denoting kn as the n-th eigenvalue and nψ  as the corresponding eigenvector, the following 
equation holds: 
 

 n
n

n M
k

T ψψ 1
=  ,   n=1, . . . , N      (2-2-33) 

 
where N is the size of matrix T, and for total energy group of G and total space mesh number of 
K, 
 
 KGN ×=  .            (2-2-34) 
 
Eq. (2-2-32) has many solutions as shown by Eq. (2-2-33), but only the largest kn is the effective 
neutron multiplication factor effk . For this value the eigenvector takes all positive elements, and 
becomes proportional to neutron flux: namely, 
 
 1αψφ =  .             (2-2-35) 
 
 The most popular method to obtain effk  and φ  is the power method. It is already 
described in Sec. (2-1-5-3). It employs the following iteration scheme: 
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where )(iS  is the number of total fission neutrons produced by the i-th iteration, and calculated 
by the following equation: 
 

 )()( iTi vFS φ=             (2-2-38) 
 
where v is a vector whose element is the volume of each space mesh. The matrix F is a matrix 
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defined by Eq. (2-2-24). 
 In the following the convergence characteristics of this method will be mentioned. The 
solution )(iφ  at the i-th iteration of Eq. (2-2-36) can be written as: 
 

 )0(1

)'(
1

1'

)( )(1 φ
Π

φ i

i
i

i

i MT
k

−
−

=

=  ,          (2-2-39) 

 
where )0(φ  and )0(k  are initial guesses. The set of eigenvectors nψ  is complete, and )0(φ  can 
be expanded as: 
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By substituting this equation into (2-2-39), we obtain: 
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Since 1k  is the eigenvalue whose absolute value is the maximum in the all eigenvalues, )(iφ  
converges to the following value when i tends to infinity: 
 

 φαψφ =→ 1
)(i  .            (2-2-42) 

 
At the same time )(ik  converges to effkk =1 .  
 The iteration can not continue infinitely, and we must stop the iteration in finite times. The 
error caused by the stop of iteration in finite times is called truncation error. The speed of the 
convergence depends on the difference between 1k  and 2k , which is called separation of 
eigenvalue.  When the number of meshes increases or the group constants gfgD ,/ Σ  becomes 
smaller, the separation of eigenvalue becomes smaller and the convergence feature becomes 
worse. It is also important for the stability of the spatial mode. 
 Sometimes the higher modes need to be solved. Wielandt iteration method, which is shown 
below, is often employed to obtain the higher modes: 
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where 
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In these iterations, of course, it is not necessary to calculate )(ik . By the similar discussion 
employed for the power method, in the Wielandt iteration method, the largest eigenvalue of h and 
the corresponding engenvector. Since h is the largest eigenvalue, the corresponding k, which is 
calculated by Eq. (2-2-44), is the k nearest to k’. From these discussions, we can derive the 
method to obtain an eigenvalue k near the value k’. In this method, we simply employ the 
iteration scheme (2-2-43) and obtain k from converged h and Eq. (2-2-44). We can see that the 
iteration (2-2-36) is the case for ∞='k  of the Wielandt iteration. 
 
(2-2-2-2) Gaussian Elimination and Choleski’s Method 
 
 In the above discussion, if Eq. (2-2-36) can be solved, the problem is solved. The right hand 
side of this equation is known. Therefore our problem finally becomes to solve the following 
equation: 
 
 sT =φ  .             (2-2-45) 
 
By substituting Eq. (2-2-17), it becomes: 
 
 sSA += φφ  .            (2-2-46) 
 
It can be rewritten as the following for each energy group: 
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g

g
gggggg SSA φφ  ,  g=1, …, G,       (2-2-47) 

 
where the upscattering is assumed to be zero as the same way for Eq. (2-2-19). Since the left hand 
side does not contain gφ , it can be written as: 
 
 ggg bA =φ               (2-2-48) 
 
When we have to treat upscattering, we need to employ the power method for that part. Even in 
that case we should solve Eq. (2-2-48). 
 
(2-2-2-2-1) Gaussian Elimination 
 
 In the following, we discuss the methods for solving Eq. (2-2-48). For simplicity we will 
omit the suffix g and write the following equation: 
 
 bA =φ  .             (2-2-49) 
 
Here the matrix A is assumed to be diagonal or block diagonal given by Eq. (2-2-20) or (2-2-30). 
 One of the simplest methods to solve Eq. (2-2-49) is an elimination method. Although there 
are several elimination methods, here we discuss Gaussian elimination, whose procedure is very 
simple and the amount of calculation is small. The calculation procedure for the tri-diagonal case, 
whose coefficients are given by Eq. (2-2-20), is mentioned below. At first the first equation is 
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multiplied by 11 / dc−  and added to the second equation. Then, the coefficient of 1φ  becomes 
zero as follows: 
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In the following, the change of coefficients shown below is performed: 
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These two equations are not conventional equations, but mean the replacement of the right hand 
side by the left hand side. By performing this replacement from k=1 to K, all the elements kc  of 
the matrix A are erased and the matrix becomes two-diagonal matrix constructed with kd  and 

ke . The equation now has the following form: 
 
 kkkkk bed =+ +1φφ  .           (2-2-53) 
 
The procedure by this stage is called forward reduction. The equation for Kk =  is given by 
 
 KKK bd =φ  .            (2-2-54) 
 
This equation can be solved easily as: 
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By substituting this equation to Eq. (2-2-53) for 1−= Kk , we can obtain 1−Kφ . Generally we 
obtain kφ  by substituting 1+kφ  to Eq. (2-2-53) or the following equation from 1−= Kk  to 

1=k : 
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This procedure is called backward substitution. 
 When the matrix A is a block tri-diagonal matrix given by Eq. (2-2-30), the following 
equation can be obtained for forward reduction: 
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and for backward substitution: 
 
 )( 11,

1
, ++
− −= lllllll AbA φφ  .          (2-2-58) 

 
 When the matrix A is tri-diagonal, the method shown above is very useful with small 
memories. However, when nonzero-element exists in other places, even if the number of this kind 
of elements is small, we may have to treat many other zero-elements, and much memory is 
required. Round-off errors (the errors caused by using a number specified by n correct digits to 
approximate a number which requires more than n digits for its exact specification) are large for 
this method. Therefore, when multi-dimensional diffusion equation with many meshes, it is 
usually solved by the SOR method mentioned in the next section. 
 
(2-2-2-2-2) Choleski’s Method 
 
 In the previous section, the matrix is assumed tri-diagonal. If the matrix does not take such 
a sparse form and most elements of the matrix are non-zero, required time and memory become 
very large. When a matrix A of Eq. (2-2-49) is such a matrix but positive definite and symmetric, 
Choleski’s method is sometimes employed to reduce these amounts.  
 The Choleski’s method is based on decomposition of the matrix A into upper and lower 
triangular matrices, which are symmetric to each other. Here we will skip the theory of this 
method, but show only its algorithm. The l, m-element of the matrix A is denoted as mla , . The 
algorithm of Choleski’s method is given by the following equations: 
 
for forward reduction: 
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for backward substitution: 
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L a
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′−′
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∑
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φ
φ  , for l=n-1, n-2, …,1, 

 
(2-2-2-3) Jacobi’s Method and SOR Method 
 
 In this section, another method to solve Eq. (2-2-49) is described. Methods described in this 
section are all iterative methods. Iterative methods can usually be written as: 
 
 gH ii +=+ )()1( φφ  ,           (2-2-59) 
 
where the matrix H is called iteration matrix. If this iteration is proper, for ∞→i :  
 
 φφφ →≈+ )()1( ii  .           (2-2-60) 
 
Therefore, from Eqs. (2-2-59) and (2-2-60): 
 
 ( ) gHI 1−−=φ  .            (2-2-61) 
 
Truncation error, which is already mentioned for the power method, should be considered in this 
kind of method. 
 
(2-2-2-3-1) Jacobi’s Method and Gauss-Seidel Method 
 
 In the following, a method to find an iteration matrix is discussed. First, the matrix A is 
discomposed into lower left triangle matrix –L, diagonal matrix D, and upper right triangle matrix 
–U: namely, 
 
 UDLA −+−=  .           (2-2-62) 
 
As a simple iteration method to solve Eq. (2-2-49), the following method can be considered: 
 
 )( )()(1)1( iii ULbD φφφ ++= −+  .         (2-2-63) 
 
This method is called Jacobi’s method. The iteration matrix is written as: 
 
 )(1 ULDH J += −  .           (2-2-64) 
 
It is not used for most problems, since its convergence is slow. In solving Eq. (2-2-63), φ  in 
φL  is known. Replacing )(iLφ  by )1( +iLφ  usually make the convergence fast: 

 
 )( )()1(1)1( iii ULbD φφφ ++= +−+  .         (2-2-65) 
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This method is called Gauss-Seidel method. The convergence condition for this method is known 
almost the same as Jacobi’s method, though its convergence speed is faster. The iteration matrix 
of this method will be discussed in the next section. 
 
(2-2-2-3-2) SOR Method 
 
 We define the modification amount of the flux by the method at the i-th iteration as: 
 
 )()1()( iii φφφΔ −≡ +  .           (2-2-66) 
 
When )(iφΔ  is obtained by some method, a method to multiply it by ω and to modify the flux 
by using this amount can be considered as: 
 
 )2/1()()()2/1()()1( )1()( +++ +−=−+= iiiiii ωφφωφφωφφ  ,     (2-2-67) 
 
where the solution before ω  multiplication is denoted by )2/1( +iφ . Though it does not always 
improve the acceleration characteristics, it improves usually for Gauss-Seidel method. This 
method is called SOR (successive overrelaxation) method, and ω  is called overrelaxation factor 
or acceleration factor. The iteration equation can be written as follows from Eqs. (2-2-65) and 
(2-2-67):  
 
 )()1( )()1(1)()1( iiii ULbD φφωφωφ +++−= +−+  .       (2-2-68) 
 
Here )1( +iφ  in Eq.  (2-2-65) is )2/1( +iφ  in Eq. (2-2-67).  We rewrite Eq. (2-2-68) in the form of 
Eq.(2-2-59): 
 
 ]})1[{()( )(1)1( bUDLD ii ωφωωωφ ++−−= −+  .      (2-2-69) 
 
The iteration matrix )(ωH  is written as:  
 
 })1{()()( 1 UDLDH ωωωω +−−≡ −  ,         (2-2-70) 
 
and Eq. (2-2-69) is written as:  
 
 )()( )()1( ωφωφ gH ii +=+  ,          (2-2-71) 
 
where 
 
 bLDg 1)()( −−≡ ωωω  .          (2-2-72) 
 
The iteration matrix of Gauss-Seidel method can be written as )1(H . 
 In the next section, we discuss the convergence characteristics of the SOR method. When 
we use Eq. (2-2-71), )(iφ  can be written by using )0(φ  as: 
 
 )())()(()( 21)0()( ωωωφωφ gIHHH kki ++++= − ････  
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 )())(())(()( 1)0( ωωωφω gHIHIH kk −−+= −  .      (2-2-73) 
 
When ∞→i , )(iφ  converges to: 
 
 )())(( 1)( ωωφ gHI −∞ −=  ,          (2-2-74) 
 
if 1)( <ωH , where )(ωH  is the norm of )(ωH . )(∞φ  satisfies Eq. (2-2-61) and the 
solution of Eq. (2-2-49). Therefore, in order to investigate the convergence of SOR method, it is 
necessary to check )(ωH . In this textbook, I omit the description about the norm, since we do 
not have an enough space. If you want to study more about basic mathematics useful for the 
numerical analysis, read Ref. (1). It may be better for readers to know several kinds of norms. 
The following are well known: 
 

For a matrix  
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       (2-2-75) 

 

l1 norm:  ∑
=

≤≤
≡

L

k
lkLl

aA
1

,11
max         (2-2-76) 

 
l2 norm:  [ ] 2/1

2
)( AAA Tρ≡         (2-2-77) 

 

l ∞  norm:  ∑
=

≤≤∞
≡

L

l
lkLk

aA
1

,1
max         (2-2-78) 

 
where )(Bρ  is the spectral radius of matrix B, and defined as: 
 
 ( )lLl

B λρ
≤≤

≡
1
max)(   ,          (2-2-79) 

 
where lλ  is the eigenvalue of matrix B. 

 The asymptotic convergence factor of iteration (2-2-59) is )(Hρ . If JH  has a p-fold zero 
eigenvalue, then )(ωH  has p corresponding eigenvalues equal to ω−1 . Moreover, associated 
with the 2r nonzero eigenvalues iμ±  of JH  are 2r eigenvalues, iλ , of )(ωH  which satisfy: 
 
 ( ) 2221 iii μωλωλ =−+  .          (2-2-80) 
 
For the Gauss-Seidel method, 1=ω  and 2

iμ  are its eigenvalues. The asymptotic convergence 
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factor of SOR iteration is obtained by solving iλ  of Eq. (2-2-80) for the largest eigenvalue, 
namely spectral radius of Jacobi’s iteration iμ . Obtained solutions are given in Fig. 2-2-1. The 
minimum value appears at: 
 

 
20

11
2

iμ
ω

−+
=  .            (2-2-81) 

 
For 0ωω ≤ , iλ  decreases with increasing ω , and for 0ωω ≥ , iλ  increasing with decreasing 
ω . The convergence becomes fastest at 0ωω = . For 0ωω ≤ , iλ  is real and the convergence is 
monotonically, and for 0ωω ≥ , iλ  is complex and the convergence is oscillatory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2-1  Asymptotic convergence factor of SOR iteration 
for given spectral radius of Jacobi’s iteration. 

 
 
 The iteration matrix of SOR method is not symmetric, that is: 
 
 )()( ωω HH T ≠  .           (2-2-82) 
 
In many cases a symmetric matrix usually shows better convergence characteristics. Here we will 
discuss a little bit of symmetrization of SOR iteration matrix. A simple way is changing the 
direction of solving equations so that after solving from top to bottom, next solving from bottom 
to top and then from top to bottom and so on. The iteration matrix is written as: 
 
 ])1[()(])1[()()( 11 LDUDUDLDH S ωωωωωωω +−−×+−−= −−  .   (2-2-83) 
 
This iteration method is called SSOR method. However, the speed of convergence of this method 
is usually slower than the original SOR method, and it is not widely used. 
 As a method connecting SOR method and SSOR method, the following method is 
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proposed: 
 
 ])1[()(])1[()()( 11 LDUDUDLDHU θθθωωωω +−−×+−−= −−  .   (2-2-84) 
 
This iteration method is called USOR method. When 0=θ , it becomes the SOR method, and 

1=θ , it becomes the SSOR method. The optimum value of θ  is considered to exist. This 
method is not widely used either. 
 
(2-2-2-4) Chebyshev (Tchebyshev) Acceleration 
 
 We again consider the iteration scheme given by Eq. (2-2-59). Here the error at the i-th 
iteration, )(ie , is given by: 
 
 ∗−= φφ )()( iie  ,            (2-2-85) 
 
where ∗φ  is the exact solution and satisfies the following equation: 
 
 gH += ∗∗ φφ  .            (2-2-86) 
 
From Eqs. (2-2-59), (2-2-85) and (2-2-86), we obtain the following equation for the error: 
 
 )()1( ii Hee =+  .            (2-2-87)
  
 
The matrix H is assumed to satisfy the following eigenvalue equation: 
 
 nnnH ψλψ =  ,  n=1, 2, …, N ,         (2-2-88) 
 
where we assume all the eigenvalues are real. The Chebyshev acceleration does not work well for 
the case of complex eigenvalues. We should note that they are real for Jacobi’s method but 
complex for SOR method. We also assume nψ  consists a complete set. 
 Here we assume for large enough I and i>I the characteristics of iteration become steady. 
We correct the (I+j)-th solution by the following equation: 
 

 ∑
=

+++ =
j

k

kI
kj

jI a
0

)(
,

)( φφ  ,           (2-2-89) 

 
where )( jI+φ  is a solution obtained by the previous iteration method, and ++ )( jIφ  is a solution 
for the present method. By using Eq. (2-2-59), )( kI+φ  can be calculated as: 
 

 ∑
−

=

+ +=
1

0

)()(
k

h

hIkkI gHH φφ  

  gHIHIH kIk )()( 1)( −−+= −φ  .        (2-2-90) 
 
By substituting Eq. (2-2-90) into Eq. (2-2-89), ++ )( jIφ  can be written as: 
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jI gHIaHIHa
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,
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0
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)( )()(φφ  .      (2-2-91) 

 
 Next, by substituting Eq. (2-2-85) into Eq. (2-2-89), we obtain: 
 

 ∑ ∑
= =

+∗++∗ +=+
j

k

j

k

kI
kjkj

jI eaae
0 0

)(
,,

)( φφ  .        (2-2-92) 

 
Since )(ie  is the error and converges to zero, we find: 
 

 ∑
=

=
j

k
kja

0
, 1  ,            (2-2-93) 

 
and  
 

 ∑
=

+++ =
j

k

kI
kj

jI eae
0

)(
,

)(  .            (2-2-94) 

 

Therefore, the problem becomes finding a proper set of kja ,  to minimize ∑
=

+
j

k

kI
kj ea

0

)(
,  under the 

condition (2-2-93). By substituting Eq. (2-2-87) into Eq. (2-2-94): 
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=
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k

Ik
kj

jI eHae
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)(   .          (2-2-95) 

 
Here, )( Ie  can be expanded by nψ , since nψ  is a completed set: 
 

 ∑
=

=
N

n
nn

I ce
1

)( ψ .            (2-2-96) 

 
By substituting Eq. (2-2-96) into Eq. (2-2-95): 
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where 
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 ∑
=

=
j

k

k
nkjnj aP

0
,)( λλ  .           (2-2-98) 

 
 Now the problem can be written in the following way: 
For the condition 
 
 1)1( =jP  ,             (2-2-99) 
 
which is equivalent to the condition (2-2-93), minimize: 
 

 )(max njP
n

λ
λ

               (2-2-100) 

 
by choosing proper kja , . 
 Since all eigenvalues nλ  are difficult to be obtained, we change Eq. (2-2-100) to:  
 

 )(max
maxmin

λ
λλλ jP

≤≤
 ,               (2-2-101) 

 
where minλ  and maxλ  are the minimum and maximum values of nλ . The problem is to find a 
proper kja ,  to minimize Eq. (2-2-101). 
 Chebyshev (Tchebyshev) polynomials, )(φjT , minimizes:  
 

 ∑
=

j

k

k
kjb

0
,max φ  ,  for 11 ≤≤− φ .           (2-2-102) 

 
Therefore, )(λjP  can be written by using Chebyshev polynomials as: 
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)(

)(
feT
feT

P
j

j
j −

−
=

λ
λ  ,              (2-2-103) 

 
where: 
 

 
minmax

2
λλ −

=e  ,               (2-2-104) 

 

 
minmax

minmax

λλ
λλ

−
+

=f  .               (2-2-105) 

 
 Chebyshev polynomials satisfy the following recurrence formula: 
 
 )()(2)( 11 φφφφ −+ −= jjj TTT  .             (2-2-106) 
 
Therefore, )(λjP  satisfies the following recurrence formula: 
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 )()()1()( 11 λμλμλλ −+ −+
−
−

= jjjjj PP
fe
feP  ,          (2-2-107) 

 
where: 
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1
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feT
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j
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−
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+

−μ  .              (2-2-108) 

 
Eq. (2-2-91) can be written as: 
 
 gHPHIHP j

I
j

jI ))(1()()( 1)()( −−+= −++ φφ  .          (2-2-109) 
 
From Eqs. (2-2-107) and (2-2-109) we obtain the following recurrence formula for ++ )( jIφ : 
 

 g
fe

e
fe
feH

j
jI

j
jI

j
jI )1()1( )1()()1( μφμφμφ +

−
+−+

−
−

= +−++++++  .        (2-2-110) 

 
 Here we summarize the procedure of this method. At first we repeat iteration by using the 
iteration matrix H until the characteristic of convergence becomes stable. When it becomes stable, 
calculate e and f by using minλ  and maxλ , and Eqs. (2-2-104) and (2-2-105). Calculate jμ  for 

each iteration time j by using Eq. (2-2-108), and repeat Eq. (2-2-110) to obtain +++ )1( jIφ . 
Generally minλ  and maxλ  are difficult to obtain. The spectral radius, ρ , of H may be estimated 
easily in an acceptable accuracy through the iterative calculations by the I-th iteration. When ρ  
is given, we may replace minλ  and maxλ  by ρ−  and ρ . For this case: 
 
 ρ=e , 
 
 0=f , 
 
and the equation becomes simple. When all the eigenvalues are positive, we can set: 
 
 0min =λ  . 
 
(2-2-2-5) SD Method and CG Method 
 
 We consider another iteration method to solve Eq. (2-2-49) by using the following iteration 
scheme: 
 
 )()()()1( iiii θαφφ +=+  ,              (2-2-111) 
 
where )(iθ  is the direction of correction and )(iα  is the magnitude of correction. Since the 
exact solution ∗φ  is not known, the error of )(iφ : 
 
 ∗−≡ φφ )()( iis                 (2-2-112) 
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is unknown. However, the error of b defined by: 
 
 bAr ii −≡ )()( φ                 (2-2-113) 
 
can be calculated. )(ir  can also be written as: 
 
 ( )*)()( φφ −= ii Ar               (2-2-114) 
 
    )(iAs=  .               (2-2-115) 
 
 We consider the following function: 
 
 rrf T≡)(φ  
 
 )()( bAbA T −−= φφ .             (2-2-116) 
 
It takes its minimum value, 0, at ∗= φφ . The equation constant)( =φf  shows an ellipse in 
multidimensional space, whose center is ∗= φφ . Our problem is equivalent to find the center of 
this ellipse. From this discussion, we try to find )(iθ  directing to this center. 
 We consider the case that the matrix A is a positive definite and symmetric. For this case, 
not )(φf  but the following function is usually minimized: 
 

rArg T 1)( −≡φ   .              (2-2-117) 
 

)(φg  can be rewritten as:  
 
 )()()( 1 bAAbAg T −−= − φφφ  
 

)()( 11 bAAbA T −− −−= φφ  
 

*)(*)( φφφφ −−= AT  
 

AssT=  .               (2-2-118) 
 
Since A is a positive definite, )(φg  is always positive and takes its minimum value, 0, at ∗= φφ . 
The treatment of Eq. (2-2-117) is much easier than Eq. (2-2-116), and then we will treat Eq. 
(2-2-117) in the following. Even if A is not positive definite and symmetric, we can make the 
problem bA =φ  positive definite and symmetric by multiplying the matrix TA  on both sides 
of the equation:  
 
 bAAA TT =φ  .               (2-2-119) 
 
 We have two methods based on this idea: SD (steepest descent) method and CG (conjugate 
gradients) method. SD method is not widely used compared with CG method. However, since it 
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is more basic and simple, we will start discussion on SD method. 
 
(2-2-2-5-1) SD Method 
 
 Since we try to minimize the amount of )(φg , the direction )(iθ  may be better chosen to 
reduce the amount of )( )(ig φ  most. Such direction is opposite to the direction of gradient of 

)( )(ig φ : namely, 
 
 )( )()( ii g φβθ ∇−=  
 
    )(2 )( bA i −−= φβ  
 
    )(2 irβ−=  , 
 
where β  is an arbitrary constant, and we choose 2/1−=β . Therefore, we choose: 
 
 )()( ii r=θ  .                (2-2-120) 
 
 In the next step, we will fix )(iα  in Eq. (2-2-111). In SD method, it is chosen to minimize 

)( )1( +ig φ , where )1( +iφ  is given by Eq. (2-2-111), so that: 
 

 0)( =+
∂
∂ αθφ
α

g  .              (2-2-121) 

 
Here 
 

 )( rg αφ
α

+
∂
∂ ])([])([ 1 brAAbrA T −+−+

∂
∂

= − αφαφ
α

 

     )(2 rrArr TT += α  .            (2-2-122) 
 
From Eqs. (2-2-121) and (2-2-122), we choose )(iα  as: 
 

 )()(

)()(
)(

iTi

iTi
i

Arr
rr

−=α  .              (2-2-123) 

 
Therefore, Eq. (2-2-111) becomes the following equation for SD method: 
 

 )(
)()(

)()(
)()1( i

iTi

iTi
ii r

Arr
rr

−=+ φφ  .             (2-2-124) 

 
(2-2-2-5-2) CG Method 
 
 We discuss CG method also for a positive definite symmetric matrix A. The way to 
transform any matrix to satisfy this condition has been already mentioned (See Eq. (2-2-119)). In 
the SD method, the correction factor α  is chosen to minimize )( αθφ +g  on the line 
determined by direction θ . This method depends on local information and is not always 
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optimum. In the CG method, we try to find the solution using global information.  
 In this method, )1( +iθ  is chosen orthogonal to any )( jθ  for j=1,…,I, and then the 
component of the error belonging to this direction is deleted. If this procedure is continued 
successfully, the error becomes zero by i becoming L, the dimension of the matrix A. Since we 
consider the minimization of Eq. (2-2-117), here we use A-orthogonal for definition of 
orthogonal, where x and y are orthogonal to each other, which means:  
 
 0=AyxT  .                (2-2-125) 
 
 As already mentioned, )1( +iθ  is chosen orthogonal to any )( jθ  for j=1,…,i: namely; 
 

 0)()1( =+ jTi Aθθ  , for j=1,…,i .           (2-2-126) 
 
And since the component of the error belonging to this direction is deleted: 
 
 0][][ *)1()()1( =−− ++ φφφφ iTii A  ,            (2-2-127) 
 
or 
 
 0)1()( =+iTi Arθ  .               (2-2-128) 
 
Here )1( +iφ  is chosen so that it locates on the line:  
  
 )()()()1( iiii θαφφ +=+  .              (2-2-129) 
 
By substituting Eq. (2-2-111) into Eq. (2-2-127) we obtain: 
 
 0][ )()(*)()()( =+− iiiTii A θαφφθα  . 
 
It can be rewritten as: 
 
 0)()()()()( =+ iTiiiTi Ar θθαθ  . 
 
Therefore we can choose )(iα  as: 
 

 
)()(

)()(
)(

iTi

iTi
i

A
r
θθ

θα −=  .              (2-2-130) 

 
 The condition (2-2-126) can be realized if we choose )1( +jθ  for j=1,…,i: 
 

 0)()1( =+ jTj Aθθ  , for j=1,…,i .           (2-2-131) 
 
Therefore, we choose the form of )1( +iθ  as: 
 

 )()()1()1( iiii r θβθ −= ++  ,             (2-2-132) 
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and by substituting this equation in to Eq. (2-2-131) for j=i; 
 

 ( ) 0)()()()1( =−+ iTiii Ar θθβ  ,  
 
or 
 

 )()(

)()1(
)(

iTi

iTi
i

A
Ar
θθ
θβ

+

=  .              (2-2-133) 

 
 Now we have obtained all necessary equations for the CG method. At this stage, it is better 
to summarize the calculation procedure. At the beginning we choose the initial direction )0(θ as: 
 
 )0()0()0( rbA =−= φθ  .              (2-2-134) 
 
The parameter )(iα  is chosen by using Eq. (2-2-129), and )1( +iφ  is calculated by using Eq. 
(2-2-111). Next we calculate )1( +ir  by using the following equation: 
 
 )()()()1( iiii Arr θα+=+  .             (2-2-135) 
 
This equation can be obtained easily from Eqs. (2-2-111) and (2-2-113). Next the parameter )(iβ  
is chosen by using Eq. (2-2-133), and )1( +iθ  is calculated by using Eq. (2-2-132). After that, the 
procedure will be repeated. Theoretically, as mentioned before, the exact solution can be obtained 
before the iteration time becomes I. However, in real calculations, it is almost impossible, since 
round-off errors exist.  
 Preconditioning of the matrix A may improve the convergence characteristics of the method. 
When Eq. (2-2-116) is minimized instead of Eq. (2-2-117), the algorithm may be changed. We 
have many kinds of CG-like methods.2)  
 We will see a different kind of application of the CG method to reactor physics problems. 
The eigenvalue equation (2-2-32) can be solved by minimizing the Rayleigh quotient: 
 

 
φφ
φφφ

M
TR T

T

=)(  ,               (2-2-136) 

 
where Tφ  is usually an adjoint vector to φ , and: 
 

 
)(min

1
φ

φ
R

keff =  .               (2-2-137) 

 
Here we can also use CG method for minimization of the Rayleigh quotient.3) 
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Problems 
 
Homework 1 
 
1-1. One fission of fissile nucleus such as 235U and 239Pu yields about 200 MeV of energy.  
Noting that:  
 
 1 eV = 1.6x10-19 J, 
 
 how many joules are released in the fission of one fissile nucleus? 
 
1-2. Applying Einstein's formula: 
 
 E = Mc2, 
 
 where c = 3x108 m/sec, the speed of light, how many kilograms of matter are converted into 
energy in the previous problem? 
 
1-3. If the atom of 235U and 239Pu has mass of 235amu and 239amu, respectively, what amount 
of equivalent energy does it have, where 1amu = 931.5MeV/c2? 
 
1-4. Using the previous results, what fraction of the mass of 235U and 239Pu nucleus is converted 
into energy when fission takes place? 
 
1-5. How many fission events per second of 235U and 239Pu can produce a thermal power of 1W 
respectively? 
 
1-6. How many kilograms of 235U and 239Pu are fissioned to produce 3000MW of thermal power 
(which is equivalent to about 1000MW of electricity) per 1day respectively? 
 
1-7. In the highly developed country such as USA, one average person is consuming energy 
with the rate of 10kW.  If they use 10% of this energy (nuclear thermal energy) by fissions of 
235U and 239Pu, estimate the amount (kg) of 235U and 239Pu he or she has consumed during his or 
her whole life, where his life is assumed to be 80 years. 
 
1-8. The whole world population in 2050 is estimated to be 9x109.  If they will be consuming 
energy at the rate given in the previous question, what is the amount (kg) of 235U and 239Pu 
consumed in 100 years respectively? 
 
 
Homework 2 
 
Problem 2A: fission reaction 
 
1) Calculate the atomic mass of 235U by using the equation shown in the textbook, and 
compare it with the recommended value obtained from the home-page:  
< http://wwwndc.tokai-sc.jaea.go.jp/NuC/index_J.html >. 
 
2) Consider the following fission reaction of 235U by absorbing a thermal neutron: 
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  235U + n → 138Xe + AX + 2n + Q 
 
2-1) What is AX? 
 
2-2) Calculate Q in MeV. 
 
2-3) 138Xe and AX are unstable, and will make β-decays to become the respective stable 
nuclides. 
 What are these stable nuclides? 
 Calculate the energies produced for these decays. 
 
2-4) What is the total energy produced by this fission and associating decays? 
 
 
Problem 2B: Fusion reaction 
 
Consider the following fusion reactions, where a deuteron with the energy of 50keV is assumed 
to collide with a target nucleus at rest: 
 
  D + D → 3He + n + Q1 
  D + D → T + p + Q2 
  D + T → 4He + n + Q３ 
 
1) Calculate Q1, Q2, Q３. 
   
2) Also calculate both maximum and minimum kinetic energies of neutrons produced in the 
first and third reactions.  
 
 
Homework 3 
 
Solve the Problems 3A through 3C by using Tables 1 through 4. 
 
Problem 3A: 
 
Calculate the mean free path of the following neutrons: 
14MeV (D-T fusion neutron)  
Fission neutrons 
Thermal neutrons 
 
In the following materials: 
Air (nitrogen 78%, oxygen 21%, argon 1%; 1 atm.)  
water, 
heavy water 
graphite 
natural uranium metal  
235U metal 
by using the values given in Tables 1 through 4 and 
 Avogadro's number = 0.602252x1024mole-1 
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Problem 3B: 
 
Calculate the average number of collisions required for slowing-down from typical energy 
(1MeV) for fission neutron to thermal energy (0.025eV) in the following pure materials:  
proton 
deuteron 
oxygen 
graphite  
235U 
if only elastic scattering is considered. 
Discuss the slowing-down in mixed isotope materials. 
 
Problem 3C: 
 
Calculate the average number of collisions of thermal neutron until absorbed in the following 
materials: 
Air (nitrogen 78%, oxygen 21%, argon 1%; 1 atm.) 
water 
heavy water  
graphite  
natural uranium metal  
235U metal 
where the energy change by scattering is neglected. 
 
Problem 3D: 
 
Calculate the η-value for uranium isotopes for the following neutrons: 
14MeV (D-T fusion neutron)  
Fission neutrons  
Thermal neutrons  
 
 

Table 1.  Properties of the elements and molecules. 
 

Element or Atomic or Normal density
molecule molecular weigh(g/cm3)
Water 18.0167 1
Heavy water 20.0276 1.105
Graphite 12.01115 1.6
Uranium metal 238.03 19.1  

 
The data for uranium are for the natural uranium. It is accepted to assume that the number density 
for other uranium composed by different isotopic composition is the same as for the natural 
uranium. 
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Table 2.  Microscopic scattering cross section (barns). (from JENDL-3.2) 
 

14MeV Fiss. Av. Maxw. Av. 0.025eV
1H 0.692 3.99 29 30.1
2H 0.625 2.54 4.15 4.23
12C 0.804 2.37 4.94 4.95
14N 0.984 1.85 10.36 10.37
16O 0.898 2.77 3.9 3.9
40Ar 0.788 2.55 0.655 0.655
235U 2.87 4.6 15 15
238U 2.7 4.85 9.38 9.38  

 
 

Table 3.  Microscopic absorption cross section (barns).  (from JENDL-3.2) 
 

14MeV Fiss. Av. Maxw. Av. 0.025eV
1H 0 0 0.294 0.332
2H 0 0 0.0005 0.0005
12C 0 0 0.0031 0.0035
14N 0.004 0.034 1.64 1.85
16O 0.044 0 0.0002 0.0002
40Ar 0.015 0 0.585 0.66
235U 2.05 1.33 593.5 683.2
238U 1.14 0.371 2.41 2.72  

 

 

Table 4.  Microscopic fission cross section (barns).  (from JENDL-3.2) 
 

14MeV Fiss. Av. Maxw. Av. 0.025eV
1H 0 0 0 0
2H 0 0 0 0
12C 0 0 0 0
14N 0 0 0 0
16O 0 0 0 0
40Ar 0 0 0 0
235U 2.05 1.24 506.8 584.4
238U 1.14 0.304 0 0  
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Homework 4 
 
Consider the material whose group constants are given in Table 1.   

 
 

Table 1.  5-group Constants. 
 

Group Eg
upper χg Σag Σfg D

(/cm) (/cm) (cm)
1 10 MeV 0.9 0.04 0.06 2.5
2 100 keV 0.1 0.06 0.04 1
3 1 keV 0 0.05 0.05 0.9
4 10 eV 0 0.17 0.13 0.8
5 1 eV 0 3 4.4 0.24  

 
5.2=ν  

 
Scattering Matrix, gg ′→Σ  . 

 
g'         g 1 2 3 4 5

1 0.22 0 0 0 0
2 0.02 0.54 0 0 0
3 0 0.005 0.76 0 0
4 0 0 0.001 0.56 0
5 0 0 0 0.00005 0.47  

 
where (n,2n) reaction is included in the scattering matrix. 
The removal cross section is assumed to be obtained from: 
 

 ∑
+=′

′→+=
G

gg
gggagr

1
,, ΣΣΣ  . 

 
Problem 5A: 
 
Calculate the infinite medium neutron multiplication factor, infk , for this material and 
corresponding neutron spectrum (use both /lethargy and /eV for its unit), where the neutron 
spectrum gφ  is normalized when the power density is 100W/cm3. 
 
Problem 5B: 
 
Get one-group constants by using the obtained spectrum as a weighting function and calculate the 
infinite medium neutron multiplication factor from these one-group constants. 
 
Hint: 
At first, calculate gφ  by assuming 1/ inf =kS . Then after calculating S, solve infk  and 
normalize neutron spectrum. 
 
 
Homework 5 
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Considering the same material given in Problem 4, solve the following problems: 
 
Problem 5A:  
Calculate the effective neutron multiplication factor for the cylindrical bare reactor by using the 
5-group constants, where both radius and height are 1 m and the extrapolation distance should be 
evaluated for each energy group. 
  
Problem 5B:  
Calculate the same quantity by using 1-group constants obtained for Problem 4. 
 
Problem 5C: 
Calculate the critical radius of this reactor by using 1-group constants, where the height is 1m. 
 
Problem 5D: 
Calculate the critical radius of this reactor by using 5-group constants, where the height is 1m. 
 
 
Final Examination  
 
Suppose a bare spherical reactor, whose radius is R, in the vacuum space, and solve the following 
problems: 
 
Problem 1 
The neutron flux in the reactor can be assumed to satisfy 2-group diffusion equation. 
Write down the neutron diffusion equation using r for radial position and employing the 
following notations and assumptions: 
1) Σf,2: Macroscopic fission cross section. Fission occurs only in the 2nd group, and does not 
occur in the 1st group. 
2) ν: Average fission neutron number. All fission neutrons appear in 1st group. 
3) Σ1→2: Macroscopic neutron slowing down cross section from the 1st to 2nd group. 
4) Σc,g andＤ g: Macroscopic capture cross section and diffusion coefficient for g-group, 
respectively. 
5) k: for effective neutron multiplication factor. 
6) The other reactions can be neglected, and neutron acceleration from 2nd to 1st group does not 
occur. 
 
Problem 2. 
Solve the infinite neutron multiplication factor for the following case: 
 ν＝2.5、Σf,2＝2.0cm-1、Σc,1＝0.010cm-1、Σc,2＝1.0cm-1、Σ1→2＝0.030cm-1 . 
Hint: Consider the uniform infinite medium. 
 
Problem 3. 
Obtain the critical radius of this bare spherical reactor, where D1＝1cm and D2=0.  The 
extrapolation distance can be assumed 0 for each energy group. 
 
 
 


