第13回

波長多重技術(2)

2007年7月17日(火)

資料中、著作権にかかわる資料は意図的に 削除しておりますことをご承知置きください。

参考文献は明記しておりますのでご参照ください。

波長多重(WDM)と分散補償技術

大容量化のための技術的アプローチ

	技術要素	現在の状況	課題	検討案
1	1波あたり伝送 速度の高速化	10Gbps→40Gbps	高速電子回路の実現	InP系、SiGe系
2	使用波長帯域の 広帯域化	S, C, Lバンドの 使用	誘導ラマン散乱による パワーチルト	分布ラマン増幅 による光強度の 補正
3	多チャネル化	100GHz間隔 →50GHz間隔	変調周波数との トレードオフ	CS-RZ, DQPSK など狭帯域 変調方式の検討

f_{iik}=f_i+f_i-f_kを満足する波長の発生効率は位相整合条件 $\Delta\beta = \beta(f_i) + \beta(f_i) - \beta(f_k) - \beta(f_{iik}) = 0 を満たす場合に最大となる。$

信号伝送特性劣化

分散はある程度の大きさが必要

2007年度 4光波混合の発生 光通信システム 発生光のパワー $P_{ijk}(L) = \eta_{ijk} \kappa^2 (B \gamma_3)^2 P_i(0) P_j(0) P_k(0) \exp(-\alpha L)$ ただし $\kappa = \frac{32\pi^2 L_{eff} / A_{eff}}{n^2 \lambda_c}$ $\eta_{ijk} = \left(\frac{\alpha^2}{\alpha^2 + \Delta\beta^2}\right) \left[1 + \frac{4\exp(\alpha L)\sin^2(\Delta\beta L/2)}{\left\{1 - \exp(-\alpha L)\right\}^2}\right] \quad (\mathfrak{R} \pm \mathfrak{R} \mathbf{x})$ $\Delta\beta = \beta(\nu_i) + \beta(\nu_j) - \beta(\nu_k) - \beta(\nu_{ijk})$

$$= \begin{cases} \frac{2\pi\lambda^{2}}{c} (\Delta v_{eq})^{2} D & (零分散波長と一致しない場合) \\ \frac{\pi\lambda^{4}}{3c^{2}} \frac{dD}{d\lambda} \left\{ (v_{ijk} - v_{0})^{3} - (v_{i} - v_{0})^{3} - (v_{j} - v_{0})^{3} + (v_{k} - v_{0})^{3} \right\} \\ (零分散波長と一致or近傍の場合) \end{cases}$$

2007年度

光诵信システム

4光波混合発生効率

① 動作波長が零分散波長と一致しない場合

 λ =1.55 μ m, L=10km, D=15ps/nm/kmの場合、

 $\Delta v_{eq} > 50 \text{GHz} \subset \tau \eta_{ijk} < 1\%$

波長間隔を大きくすることにより4光波混合を抑制可能

② 動作波長が零分散波長と一致あるいはきわめて近傍の場合

$$\Delta\beta = 0: 位相整合条件 を満たす$$

4光波混合によるコヒーレントクロストークの影響大

^{2007年度} 光通信システム 分散マネジメント伝送(SMF+DCF/SMF+RDFなど)

2007年度 FWMの影響(解析例)

① DSF (分散2km/nm/km)88km ② NZ-DSF(分散8ps/nm/km)×80km +DCF(分散-80ps/nm/km)×8km

2007年度

分散マネジメント伝送路の効果(解析例)

^{2007年度} 光通信システム 分散マネジメント伝送路における累積分散の影響

2007年度 光通信システム 分散マネジメントと分布ラマン増幅による7,400km伝送実験

T. Tanaka, T. Naito, N. Shimojoh, H. Nakamoto and K. Torii (Fujitsu), OFC2002, WX1 (2002).

全Raman增幅器実験系

分散マップ

FWM発生効率

FWM抑制の	FWM抑制の条件									
 大A_{eff} 大分散 低n₂ 低損失 	: ガラス材料により決まる量 : 十分な低損失を実現済み									

大A_{eff}光ファイバ

タイプ	屈折率分布	電界分布	$\begin{array}{c} A_{\rm eff}(\mu m^2)\\ @ 1550 nm \end{array}$	MFD (µm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm
標準SMF			80~85	10	+17	0.06
階段型 DSF			40~50	7.5~8.5 <mark>yトオフ波長</mark> の	-5~+5 の長波長シフ	$0.07 \sim 0.1$
セグメンテッド コア型			eff 人 /曲	げ損失増大 8~9	-5~+5	0.10∼0.12
中心ディップ 型(単リング)			80 ~ 120	8~10	-5~+5	0.08~0.09
		ー <mark>電界分布カ</mark>	<mark>、中心にディ</mark>	<mark>ップを持つ</mark> 🤇	──)_ <mark>通常ファ</mark> ┌─/ (1dB程	マイバとの接続損失ス 度)
□ 中心ティッノ □ 型(2重リング)			80~150	8~10	-5~+5	0.08~0.09

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.68-73 (1999).

各社ホームページの製品情報より

メーカ	製品名	伝送損失 (dB/km)	分散 (ps/nm/km)	分散スロープ (ps/nm²/km)	PMD (ps/ √km)
住友電工	PureGuide®				
Corning	Leaf TM				
Lucent	TrueWave TM				
Alcatel	TeraLight TM				

分散補償ファイバ

屈折率分布	MFD (μm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm	性能指数 (ps/nm/dB) @ 1550nm
	5.0	-70 ~ -90	+0.08	200 ~ 250
	5.0	-70 ~ -90	+0.08	200~250
	4.5	-100~-135	-0.2~-0.5	200~300
F	DF 5.8	-15.6	-0.046	62
	5.0	-100~-300	-0.15	300 ~ 400

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.68-73 (1999).

@ 1550nm

ファイバ	損失 (dB/km)	n_2 (×10 ⁻²⁰ m ² /W)	A _{eff} (μm ²) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km)
+D	0.171	2.8	112	+20.6	+0.060
-D	0.296	4.0	19	-55.9	-0.142
+D/-D	0.212		79	-1.5	+0.007

10.92Tb/s WDM伝送実験

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasawara and T. Ono (NEC), OFC2001, PD24-1, 2001.

光スペクトルとBER特性

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasawara and T. Ono (NEC), OFC2001, PD24-1, 2001.

A.H. Gnauck, G. Charlet, P. Tran, P.J. Winzer, C.R. Doerr, J.C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, OFC2007, PDP19.

伝送容量: 42.7Gbps× $\frac{40.0}{42.7}$ ×2値多重(DQPSK)×2(偏波多重)×80 λ ×2(C+Lバンド) =25.6Tbps

スペクトル利用効率: 40Gbps÷50GHz/ch×2(DQPSK)×2(偏波多重) =3.2bps/Hz

光スペクトル

アイパターン

分散補償器

2007年度 光通信システム ラティス型フィルタを用いた分散補償器

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

8チャネル40Gbps WDM用PLC型分散スロープ補償器

分散補償特性

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

2007年度 光通信システム Virtually-Imaged Phased Array (VIPA)

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

VIPAの分散特性

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2007年度} _{光通信システム}分散マネジメント伝送路とVIPAを用いた40Gbps伝送結果

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2007年度} _{光通信システム} 偏光度モニタを用いたPMD補償器

磯村, ラスムッセン, 大井, 秋山, 石川, 2003年信学ソ大, B-10-124 (2003).

2007年度 光通信システム PMD-波長分散同時自動補償実験

大井, ラスムッセン, 高原, 中村, 磯村, 福士, 石川, 2003年信学ソ大, B-10-121 (2003).

2007年度 光通信システム EDC (Electronic Dispersion Compensation)技術(1)

H. Haunstein, R. Schlenk, K. Sticht, A. Dittrich, W. Sauer-Greff, and R. Urbansky, OFC2003, ThG5.

2007年度 光通信システム EDC (Electronic Dispersion Compensation)技術(2)

Pre-Compensation技術:送信器側で強度・位相調整

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mark, and M. O'Sullivan, OFC2005, PDP27.

2007年度 光通信システム EDC (Electronic Dispersion Compensation)技術(3)

J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, OFC2005, OThJ3.

CWDM

各種WDMとデバイス

杉江, 2003年信学ソ大, SC-6-1 (2003).

ITU-T G.694.2での標準化
・光アンプの使用は想定せず
・Uncooledの安価なDFB-LDを使用
・現在の製造技術で量産可能なWDMフィルタを使用

