第12回

光增幅器·波長多重技術

2007年7月9日(月)

資料中、著作権にかかわる資料は意図的に 削除しておりますことをご承知置きください。

参考文献は明記しておりますのでご参照ください。

いろいろな光増幅器

^{2007年度} _{光通信システム} Pr, Er, Tmイオンのエネルギー準位

* OOFFA:フッ化物光ファイバ増幅器 OOTFA:テルライト系光ファイバ増幅器 OOSFA:石英系光ファイバ増幅器 OOはPD, ED, TD

- 信号光波長 : 1.55µm
- 適用波長 : 1.535μm~1.560μm
- 利得 : 20 ~ 30dB
- 雑音指数(NF) : 5.0dB
- 飽和光出力 : +20dBm
- 伝送路損失 : 0.2dB/km
- 伝送路分散 : 0.5ps/nm/km

励起波長による特性差

波長	1.48µm	0.98µm
光源	InGaAsP/InP MQW-LD	InGaAs/GaAs歪MQW-LD
利得効率	5dB/mW	10dB/mW
雑音指数	5.5dB	3∼4.5dB
飽和光出力	+20dBm	+20dBm
励起波長範囲	1.47 ~ 1.49μm (20nm)	0.979~0.981m (2.5nm)
励起光出力	< 400mW	< 350mW

^{2007年度} 光通信システム L帯EDFAの利得スペクトル

・平均の反転分布を低い状態で使用。

・利得平坦度3dBの増幅帯域はEDTFAが最も広い(1.56μm~1.61μm)

M. Yamada et al., Electron. Lett., 33, pp. 710-711, 1997

^{2007年度} 光通信システム 広帯域EDTFAの増幅特性

•1.48µm励起EDTFA+利得等価器

•3dB以下の利得平坦度: 1.534µm~1.606µm (72nm)

^{2007年度} _{光通信システム}利得透過型TDFFAの増幅特性

T. Sakamoto et al., in OAA'99, paper WD2.

^{2007年度} ^{光通信システム</sub>利得透過型PDFFAの増幅特性}

・プラセオジウムドープ:1.3µm帯用

・PbF2/InF3系PDFFA(下図)

・ZBLAN系に比べてフォノンエネルギー低い → 量子効率高いのが特徴

T.Sakamoto et al., in OAA99, paper PD5

2007年度

光通信システム

Raman増幅器の特徴

信号光波長と励起光波長の関係

ラマン散乱:

励起光により分子振動(LOフォノン)を引き起こし、その差のエネルギーの光を 散乱する現象

2007年度

光通信システム 波長帯域202nmの分布ラマン増幅器を用いた伝送実験

田中,鳥居,幸,中元,内藤,横田,2003年信学ソ大,B-10-113 (2003).

4.23Tbps, 120km伝送

EDFAの広帯域化の進展(1)

2007年度

光通信システム

H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, OFC2007, PDP20.

ハイブリッドラマン・EDFA:ラマン増幅器とEDFAを組み合わせ、広帯域と高利得を実現

H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, OFC2007, PDP20.

2007年度 光通信システム

第8章

波長多重伝送技術

2007年7月9日(月)

1. 波長多重(WDM)伝送と変調方式

- 2. WDM伝送と分散マネジメント
- 3. 分散補償器

DWDM: Dense Wavelength Division Multiplexing(高密度波長多重技術)

周波数間隔:100GHz → 波長間隔:0.8nm間隔@1550nm帯 に相当

2007年度 光通信システム

波長多重伝送の構成

2007年度 光通信システム AWGを多段中継するリングネットワーク

WSS : Wavelength Selective Switch

2007年度 光通信システム

アレイ導波路格子 (AWG)

2007年度 光通信システム

AWG (Arrayed Waveguide Grating)

2007年度 光通信システム 400ch 25GHz spacing AWG(石英系)

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita and A. Himeno (NTT), Electron. Lett., vol. 37, pp.820-821 (2001).

2007年度 光通信システム

小型·大規模AWG

波長多重(WDM)と変調方式

^{2007年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(1-1)**

高周波数利用効率

^{2007年度} _{光通信システム} DWDMにおける変調方式への要求仕様(1-2)

バイナリ(2値)から多値変調へ

(例)DQPSK変調

30nm帯域, 0.8bps/Hzの変調方式を用いる場合 バイナリ変調

10Gbps(12.5GHz or 0.1nm間隔)→300波長 10Gbps×300波長=3Tbps

40Gbps(50GHz or 0.4nm間隔)→75波長 40Gbps×75波長=3Tbps

伝送容量は変わらない!

DQPSK変調

位相4値なので、バイナリ変調の半分の帯域で
同じ伝送容量を実現
40Gbps = 20Gbps × 2
20Gbps(25GHz or 0.2nm間隔)→150波長
40Gbps × 150波長 = 6Tbps

伝送容量倍增!

DQPSKの研究動向

R.A. Griffin, OFC2005, OWE3.

DQPSK : Differential Quadrature PSK

DQPSK送信器

R.A. Griffin, OFC2005, OWE3.

スペクトル利用効率 2.5bps/Hzの報告 S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh and K. Kikuchi, OFC2005, PDP29. ^{2007年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(2-1)**

^{2007年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(2-2)**

平均受信感度Paveを用いてRZ·NRZのSNRを比較する。

$$SNR = \left(\frac{e\eta i \frac{GPs}{\hbar\omega}}{\left(\frac{\sqrt{\sigma s, shot^{2} + \sigma sp, shot^{2} + \sigma s - sp^{2} + \sigma sp - sp^{2} + \sigma th^{2}} + \sqrt{\sigma sp, shot^{2} + \sigma sp - sp^{2} + \sigma th^{2}}}{2}\right)^{2}$$

 $Ps: RZ = NRZ \times 2(ピーク強度)$ $\sigma_{s,shot}^{2}, \sigma_{s-sp}^{2}: RZ = NRZ \times 4 (ピーク強度&帯域)$ $\sigma_{sp,shot}^{2}, \sigma_{sp-sp}^{2}, \sigma_{th}^{2}: RZ = NRZ \times 2 (帯域)$ より、SNR(RZ)>SNR(NRZ) 2007年度 DPSK変調 光通信システム DPSK(Differential Phase-Shift-Keying, 差動位相シフトキーイング方式) PSK変調の1種でデータ1を隣接ビット間の位相差π、データ0を 隣接ビット間の位相差0に割り当てたもの。 40Gbps DWDMの長距離・受信感度改善を目的にこの2~3年急激に 取り組みが盛んになってきた。 π 0 0 π 1ビット遅延 バランス型 送信 受信器 DPSK 信号 信号光 0 π π 1ビット 遅延 バランス型受信器 受信 0 により両極電流を得る 電流 バランス型検波器により光位相0, πを電気レベル+1, -1に変換 電圧0に閾値を設定でき、レベル0,1の受信より感度を3dB改善可能

DPSK変調信号の生成方法

A.H. Gnauck, OFC2004 Tutorial, TuF5.

DPSK変調信号の受信器

A.H. Gnauck, OFC2004 Tutorial, TuF5.

40Gbps RZ-DPSK伝送実験例

A.H. Gnauck, OFC2004 Tutorial, TuF5.

^{2007年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(3)**

(例1) NRZはRZの半分の帯域で済むので変調効率の観点では有利だが、 1インターバルの平均光パワーが倍のため非線形耐力は劣る。

NRZ

RZ

2007年度

DWDMにおける変調方式への要求仕様(4) 光诵信システム

^{2007年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(5)**

多賀, 鈴木, 波平, 2000年信学会総合大会, SB-8-7 (2000).

2007年度

DWDMにおける変調方式への要求仕様(6) 光诵信システム

波長フィルタ多段透過耐性

多段フィルタによるスペクト形状変化・波形劣 化→狭帯域スペクトルの変調方式 (2值:CS-RZ, Duobinary)(多值:DQPSK)

波長フィルタの透過スペクトル

^{2007年度} 光通信システム 変復調方式の比較(40Gbps以上)

