Advanced Data Analysis: Blind Source Separation

Masashi Sugiyama (Computer Science)

W8E-505, <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi

Blind Source Separation 228

Cocktail-party problem:

We want to separate mixed signals into original ones.

Demonstration

	Mixed signal	Separated signal 1	Separated signal 2
Conversation			
+			
Conversation			
Conversation			
+	e		4
Instrument			

From http://www.brain.kyutech.ac.jp/~shiro/research/blindsep.html

Formulation

Source signals:

- Speaker 1: $s_1^{(1)}, s_2^{(1)}, \dots, s_n^{(1)}$ WWWWWM
- Speaker 2: $s_1^{(2)}, s_2^{(2)}, \dots, s_n^{(2)}$ /////

Mixed signals:

• Left ear: $x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}$ WWWWWW • Right ear: $x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)}$ $\mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M}$

$$x_i^{(1)} = m_{11}s_i^{(1)} + m_{12}s_i^{(2)}$$
$$x_i^{(2)} = m_{21}s_i^{(1)} + m_{22}s_i^{(2)}$$

Formulation (cont.)

231

In matrix form:

$$\boldsymbol{x}_{i} = \boldsymbol{M}\boldsymbol{s}_{i}$$
$$\boldsymbol{x}_{i} = \begin{pmatrix} x_{i}^{(1)} \\ x_{i}^{(2)} \end{pmatrix}$$
$$\boldsymbol{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \quad \boldsymbol{s}_{i} = \begin{pmatrix} s_{i}^{(1)} \\ s_{i}^{(2)} \end{pmatrix}$$

More generally

- $x_i, s_i : d$ -dimensional vectors
- M : d -dimensional matrix.

Problem

$$m{x}_i = m{M}m{s}_i$$

- We want to estimate $\{s_i\}_{i=1}^n$ from $\{x_i\}_{i=1}^n$.
- Approach: Estimate M, and use its inverse for obtaining $\{\widehat{s}_i\}_{i=1}^n$.

$$\widehat{m{s}}_i = \widehat{m{M}}^{-1} m{x}_i$$
 ,

- In BSS, the followings may not be important:
 - Permutation of separated signals
 - Scaling of separated signals
- Therefore, we estimate \widehat{M}^{-1} up to permutation and scaling of rows.

Assumptions

 $\{s_i\}_{i=1}^n$ are i.i.d. random variables with mean zero and covariance identity:

$$\frac{1}{n}\sum_{i=1}^{n}s_{i} = 0$$
$$\frac{1}{n}\sum_{i=1}^{n}s_{i}s_{i}^{\top} = I_{d}$$
$$\{s^{(j)}\}_{j=1}^{d} \text{ are mutually independent:}$$
$$P(s^{(1)}, s^{(2)}, \dots, s^{(d)}) = P(s^{(1)})P(s^{(2)})\cdots P(s^{(d)})$$

$$[s^{(j)}]_{j=1}^d$$
 are non-Gaussian.

- \mathbf{M} is invertible.
- BSS under source independence is called independent component analysis.

Source signals (uniform)

Data Sphering

Sphering (or pre-whitening):

$$\widetilde{oldsymbol{x}}_i = oldsymbol{C}^{-rac{1}{2}}oldsymbol{x}_i$$

$$\boldsymbol{C} = rac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_j \boldsymbol{x}_j^{ op}$$

235

$$\widetilde{oldsymbol{x}}_i = \widetilde{oldsymbol{M}} oldsymbol{s}_i \qquad \widetilde{oldsymbol{M}} = oldsymbol{C}^{-rac{1}{2}} oldsymbol{M}$$

Now we want to estimate \widetilde{M} from $\{\widetilde{x}_i\}_{i=1}^n$, and obtain $\{\widehat{s}_i\}_{i=1}^n$ by

$$\widehat{oldsymbol{s}}_i = oldsymbol{W} \widetilde{oldsymbol{x}}_i \qquad oldsymbol{W} = \widetilde{oldsymbol{M}}^{-1}$$

Orthogonal Matrix

 \widetilde{M} is an orthogonal matrix since

$$\widetilde{\boldsymbol{C}} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top} = \boldsymbol{I}_{d}$$
$$\widetilde{\boldsymbol{C}} = \widetilde{\boldsymbol{M}} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{s}_{i} \boldsymbol{s}_{i}^{\top} \right) \widetilde{\boldsymbol{M}}^{\top} = \widetilde{\boldsymbol{M}} \widetilde{\boldsymbol{M}}^{\top}$$

Therefore,

 $\widehat{s}_i = W \widetilde{x}$

$$egin{aligned} m{W} &= \widetilde{m{M}}^{-1} = \widetilde{m{M}}^{ op} \equiv (m{w}^{(1)} | m{w}^{(2)} | \cdots | m{w}^{(d)})^{ op} \ & \{m{w}^{(j)}\}_{j=1}^d \ ext{:Orthonormal basis} \ & \widehat{s}_i^{(j)} = \langlem{w}^{(j)}, \widetilde{m{x}}_i
angle \end{aligned}$$

Non-Gaussian Is Independent²³⁸

- Now we want to find an ONB $\{w^{(j)}\}_{j=1}^d$ such that $\{\widehat{s}^{(j)}\}_{j=1}^d$ are independent.
- Central limit theorem: Sum of independent variables tends to be Gaussian.
- Conversely, non-Gaussian variables are independent.
- We find non-Gaussian directions in $\{\widetilde{x}_i\}_{i=1}^n$.

Example (cont.)

239

Non-Gaussian direction is independent.

ICA by Projection Pursuit ²⁴⁰

- Finding non-Gaussian directions can be achieved by projection pursuit algorithms!
 - Center and sphere the data.
 - Find non-Gaussian directions by PP.
- We may use an approximate Newtonbased PP method, which is called FastICA.

Example 2

Example 2 (cont.)

Source

Separated

0 -0.5 Original signals are recovered up to permutation and scaling.

From http://www.brain.kyutech.ac.jp/~shiro/research/blindsep.html

Notification of Final Assignmen⁴⁴

- Data mining: Apply dimensionality reduction or clustering techniques to your own data set and find something interesting.
- Deadline: July 27th (Fri.)
- Submit your final report by e-mail:

sugi@cs.titech.ac.jp

Mini-Conference on Data Analyร์เร็

- On July 10th (final class), we have a mini-conference on data analysis, instead of a regular lecture.
- Some of the students (5-10?) may present their data analysis results.
- Those who give a talk at the conference will have very good grades! (Note: final report should be submitted)

Mini-Conference on Data Analy ອໍ່າຮໍ

Presentation: approx. 10 min?

- Description of your data
- Methods to be used
- Outcome
- Slides should be in English.
- Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).