Advanced Data Analysis: Blind Source Separation

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

Blind Source Separation

Cocktail-party problem:

Mandman

- We want to separate mixed signals into original ones.

Demonstration

229

	Mixed signal	Separated signal 1	Separated signal 2
Conversation $+$ Conversation	服	誫	艮
Conversation $+$ Instrument	\downarrow	\downarrow	\downarrow

From http：／／www．brain．kyutech．ac．jp／～shiro／research／blindsep．html

Formulation

■ Source signals:

- Speaker 1: $s_{1}^{(1)}, s_{2}^{(1)}, \ldots, s_{n}^{(1)}$

- Speaker 2: $s_{1}^{(2)}, s_{2}^{(2)}, \ldots, s_{n}^{(2)}$

\square Mixed signals:
- Left ear:
$x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{n}^{(1)}$
unMomamo
- Right ear: $x_{1}^{(2)}, x_{2}^{(2)}, \ldots, x_{n}^{(2)}$ MNWMNWM

$$
\begin{aligned}
x_{i}^{(1)} & =m_{11} s_{i}^{(1)}+m_{12} s_{i}^{(2)} \\
x_{i}^{(2)} & =m_{21} s_{i}^{(1)}+m_{22} s_{i}^{(2)}
\end{aligned}
$$

Formulation (cont.)

- In matrix form:

$$
\begin{gathered}
\boldsymbol{x}_{i}=\boldsymbol{M} \boldsymbol{s}_{i} \\
\boldsymbol{x}_{i}=\binom{x_{i}^{(1)}}{x_{i}^{(2)}} \\
\boldsymbol{M}=\left(\begin{array}{cc}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right) \quad \boldsymbol{s}_{i}=\binom{s_{i}^{(1)}}{s_{i}^{(2)}}
\end{gathered}
$$

More generally

- $\boldsymbol{x}_{i}, s_{i}: d$-dimensional vectors
- $M: d$-dimensional matrix.

Problem

232

$$
\boldsymbol{x}_{i}=\boldsymbol{M} s_{i}
$$

\square We want to estimate $\left\{\boldsymbol{s}_{i}\right\}_{i=1}^{n}$ from $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$.
\square Approach: Estimate M, and use its inverse for obtaining $\left\{\widehat{s}_{i}\right\}_{i=1}^{n}$.

$$
\widehat{\boldsymbol{s}}_{i}=\widehat{\boldsymbol{M}}^{-1} \boldsymbol{x}_{i}
$$

■ In BSS, the followings may not be important:

- Permutation of separated signals
- Scaling of separated signals
- Therefore, we estimate \widehat{M}^{-1} up to permutation and scaling of rows.

Assumptions

233
$\square\left\{s_{i}\right\}_{i=1}^{n}$ are i.i.d. random variables with mean zero and covariance identity:

$$
\frac{1}{n} \sum_{i=1}^{n} s_{i}=0 \quad \frac{1}{n} \sum_{i=1}^{n} s_{i} s_{i}^{\top}=\boldsymbol{I}_{d}
$$

$\square\left\{s^{(j)}\right\}_{j=1}^{d=1}$ are mutually independent:

$$
P\left(s^{(1)}, s^{(2)}, \ldots, s^{(d)}\right)=P\left(s^{(1)}\right) P\left(s^{(2)}\right) \cdots P\left(s^{(d)}\right)
$$

$\square\left\{s^{(j)}\right\}_{j=1}^{d}$ are non-Gaussian.
$\square M$ is invertible.
\square BSS under source independence is called independent component analysis.

Example

234

Source signals (uniform)

$s^{(2)}$

Mixed signals

$$
M=\left(\begin{array}{ll}
1 & 3 \\
5 & 1
\end{array}\right)
$$

Data Sphering

235
\square Sphering (or pre-whitening):

$$
\widetilde{\boldsymbol{x}}_{i}=\boldsymbol{C}^{-\frac{1}{2}} \boldsymbol{x}_{i} \quad \boldsymbol{C}=\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{\top}
$$

- Then

$$
\widetilde{\boldsymbol{x}}_{i}=\widetilde{\boldsymbol{M}} s_{i} \quad \widetilde{\boldsymbol{M}}=C^{-\frac{1}{2}} \boldsymbol{M}
$$

\square Now we want to estimate $\widetilde{\boldsymbol{M}}$ from $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$, and obtain $\left\{\widehat{s}_{i}\right\}_{i=1}^{n}$ by

$$
\widehat{\boldsymbol{s}}_{i}=\boldsymbol{W} \widetilde{\boldsymbol{x}}_{i} \quad W=\widetilde{\boldsymbol{M}}^{-1}
$$

Example

Source signals (uniform)

Mixed signals
$M=\left(\begin{array}{ll}1 & 3 \\ 5 & 1\end{array}\right)$
Sphered signals

$$
\widetilde{\boldsymbol{x}}_{i}=\boldsymbol{C}^{-\frac{1}{2}} \boldsymbol{x}_{i}
$$

Orthogonal Matrix

237
$\square \widetilde{M}$ is an orthogonal matrix since

$$
\begin{aligned}
& \widetilde{\boldsymbol{C}}=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d} \\
& \widetilde{\boldsymbol{C}}=\widetilde{\boldsymbol{M}}\left(\frac{1}{n} \sum_{i=1}^{n} s_{i} s_{i}^{\top}\right) \widetilde{\boldsymbol{M}}^{\top}=\widetilde{\boldsymbol{M}} \widetilde{\boldsymbol{M}}^{\top}
\end{aligned}
$$

- Therefore,

$$
\widehat{\boldsymbol{s}}_{i}=\boldsymbol{W} \widetilde{\boldsymbol{x}}
$$

$$
\begin{aligned}
\boldsymbol{W}=\widetilde{\boldsymbol{M}}^{-1}= & \widetilde{\boldsymbol{M}}^{\top} \equiv\left(\boldsymbol{w}^{(1)}\left|\boldsymbol{w}^{(2)}\right| \cdots \mid \boldsymbol{w}^{(d)}\right)^{\top} \\
& \left\{\boldsymbol{w}^{(j)}\right\}_{j=1}^{d}: \text { Orthonormal basis } \\
& \widehat{s}_{i}^{(j)}=\left\langle\boldsymbol{w}^{(j)}, \widetilde{\boldsymbol{x}}_{i}\right\rangle
\end{aligned}
$$

Non-Gaussian Is Independent ${ }^{238}$

\square Now we want to find an ONB $\left\{\boldsymbol{w}^{(j)}\right\}_{j=1}^{d}$ such that $\left\{\widehat{s}^{(j)}\right\}_{j=1}^{d}$ are independent.

- Central limit theorem: Sum of independent variables tends to be Gaussian.
- Conversely, non-Gaussian variables are independent.
\square We find non-Gaussian directions in $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$.

Example (cont.)

239
\square Non-Gaussian direction is independent.

ICA by Projection Pursuit ${ }^{240}$

■ Finding non-Gaussian directions can be achieved by projection pursuit algorithms!

- Center and sphere the data.
- Find non-Gaussian directions by PP.
- We may use an approximate Newtonbased PP method, which is called FastlCA.

Example 2

Source

Mixed

$\int_{0}^{\sqrt{N^{N} N^{N} N^{N} N^{N}}} \underbrace{200}_{100}$

Sphered

Example 2 (cont.)

242

Source

- Original signals are recovered up to permutation and scaling.

Example 3

243

	Mixed signal	Separated signal 1	Separated signal 2
Conversation Conversation	¢	䀠	4
Conversation $+$ Instrument	4	4	4

From http://www.brain.kyutech.ac.jp/~shiro/research/blindsep.html

Notification of Final Assignment ${ }^{44}$

- Data mining: Apply dimensionality reduction or clustering techniques to your own data set and find something interesting.
- Deadline: July $27^{\text {th }}$ (Fri.)

■ Submit your final report by e-mail: sugi@cs.titech.ac.jp

Mini-Conference on Data Analysits

■ On July $10^{\text {th }}$ (final class), we have a mini-conference on data analysis, instead of a regular lecture.

- Some of the students (5-10?) may present their data analysis results.
- Those who give a talk at the conference will have very good grades! (Note: final report should be submitted)

Mini-Conference on Data Analysits

- Presentation: approx. 10 min?
- Description of your data
- Methods to be used
- Outcome
- Slides should be in English.
- Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).

