Advanced Data Analysis: Projection Pursuit

Masashi Sugiyama (Computer Science)

W8E-505, <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi

I.i.d. Samples

Independent and identically distributed (i.i.d.) samples

$$oldsymbol{x}_i \stackrel{i.i.d.}{\sim} P(oldsymbol{x})$$

 Independent: joint probability is a product of each probability

$$P(\boldsymbol{x}_i, \boldsymbol{x}_j) = P(\boldsymbol{x}_i)P(\boldsymbol{x}_j)$$

• Identically distributed: each variable follow the identical distribution:

$$\boldsymbol{x}_i \sim P(\boldsymbol{x})$$

Gaussian Distribution

181

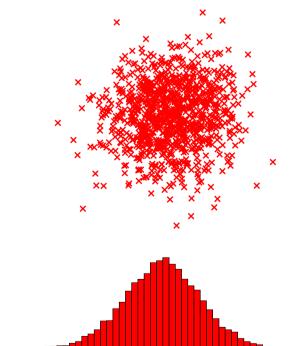
Gaussian distribution: Probability density function is given by

Interesting Directions for Data Visualization

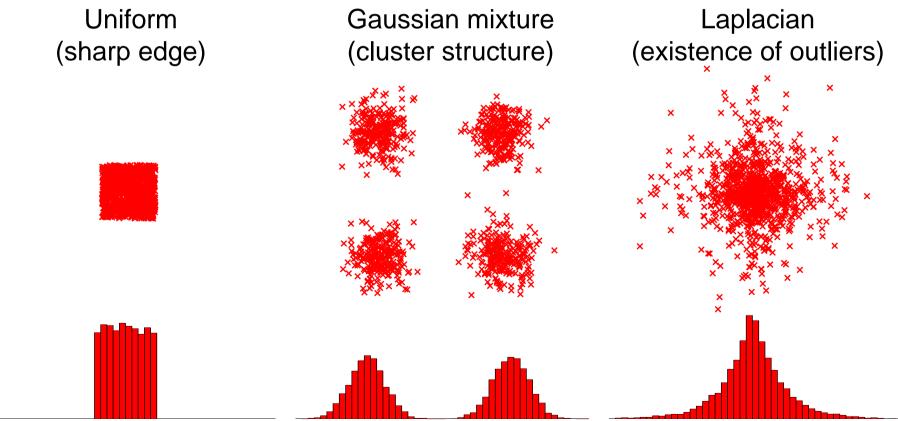
Which distribution is interesting to visualize?

If data follows the Gaussian distribution, samples are spherically distributed.

Visualizing spherically distributed samples is not so interesting.
 What about "non-Gaussian" data?



Non-Gaussian data look more interesting than Gaussian:



Projection Pursuit

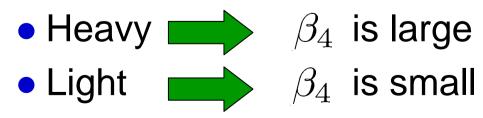
- Idea: Find the most non-Gaussian direction in the data
- For this purpose, we need a criterion to measure non-Gaussianity of data as a function of the direction.

Kurtosis

Kurtosis for a one-dimensional random variable s:

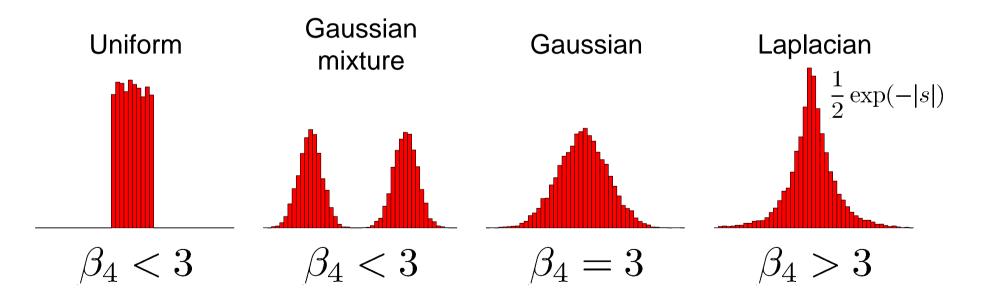
$$\beta_4 = \frac{\mathbb{E}[(s - \mathbb{E}[s])^4]}{(\mathbb{E}[(s - \mathbb{E}[s])^2])^2} \quad (>0)$$

- Kurtosis measures the "sharpness" of the distributions.
- If tail of distribution is



Kurtosis (cont.)

- $\beta_4 = 3$: Gaussian distribution
- $\beta_4 < 3$: Sub-Gaussian distribution
- $\beta_4 > 3$: Super-Gaussian distribution



Kurtosis-Based Non-Gaussianity Measure

$$\beta_4 = \frac{\mathbb{E}[(s - \mathbb{E}[s])^4]}{(\mathbb{E}[(s - \mathbb{E}[s])^2])^2}$$

- Non-Gaussianity is strong if $(\beta_4 3)^2$ is large.
- Non-Gaussianity of the data for a direction *b* can be measured by letting $s = \langle b, x \rangle$ and ||b|| = 1.

PP Criterion

In practice, we use empirical approximation:

$$J_{PP}(\boldsymbol{b}) = \left(\frac{\frac{1}{n}\sum_{i=1}^{n}(s_i - \overline{s})^4}{(\frac{1}{n}\sum_{i=1}^{n}(s_i - \overline{s})^2)^2} - 3\right)$$

$$s_i = \langle m{b}, m{x}_i
angle$$
 $\overline{s} = rac{1}{n} \sum_{i=1}^n s_i$

188

PP criterion:

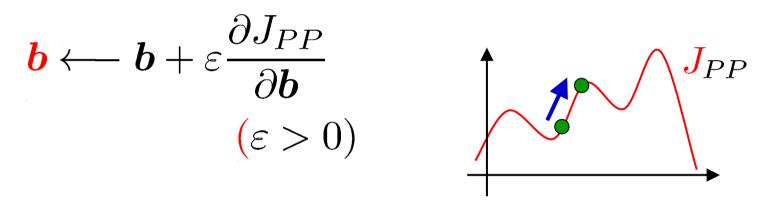
$$oldsymbol{\psi} = \operatorname*{argmax}_{oldsymbol{b} \in \mathbb{R}^d} J_{PP}(oldsymbol{b}) \ \mathrm{subject to} \|oldsymbol{b}\| =$$

- There is no known method for analytically solving this optimization problem.
- We resort to numerical methods.

Gradient Ascent Approach ¹⁸⁹

Repeat until convergence:

• Update \boldsymbol{b} to increase J_{PP} :



• Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\| = 1$:

 $oldsymbol{b} \longleftarrow oldsymbol{b} / \|oldsymbol{b}\|$

 $\|b\| = 1$

Data Centering and Sphering¹⁹⁰

We center and sphere for easy calculation.

Centering:

$$\overline{x}_i = x_i - rac{1}{n} \sum_{j=1}^n x_j$$

Sphering (or pre-whitening):

$$\widetilde{\boldsymbol{x}}_i = \left(\frac{1}{n}\sum_{i=1}^n \overline{\boldsymbol{x}}_i \overline{\boldsymbol{x}}_i^{\top}\right)^{-\frac{1}{2}} \overline{\boldsymbol{x}}_i$$

In matrix, $\widetilde{X} = (\frac{1}{-XH^2})^2$

$$\widetilde{X} = (\frac{1}{n} X H^2 X^{\top})^{-\frac{1}{2}} X H$$

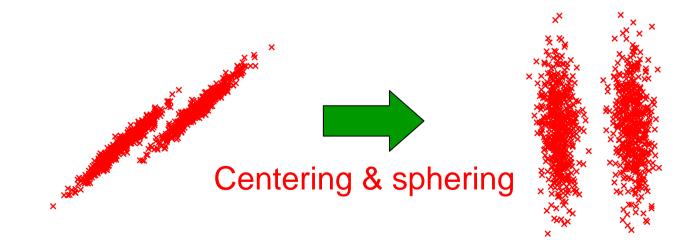
$$\widetilde{oldsymbol{X}}=(\widetilde{oldsymbol{x}}_1|\widetilde{oldsymbol{x}}_2|\cdots|\widetilde{oldsymbol{x}}_n)$$

$$H = I_n - \frac{1}{n} \mathbf{1}_{n \times n}$$

 $oldsymbol{X} = (oldsymbol{x}_1 | oldsymbol{x}_2 | \cdots | oldsymbol{x}_n)$

 I_n : *n*-dimensional identity matrix $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones Data Centering and Sphering¹⁹¹
 By centering and sphering, covariance matrix becomes identity:

$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{\boldsymbol{x}}_{i}\widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}$$



Simplification for Sphered Data⁹²

For centered and sphered samples $\{\widetilde{m{x}}_i\}_{i=1}^n$,

$$J_{PP}(\boldsymbol{b}) = \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right)$$

$$\frac{\partial J_{PP}}{\partial \boldsymbol{b}} = 2\left(\frac{1}{n}\sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right) \left(\frac{4}{n}\sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3\right)$$

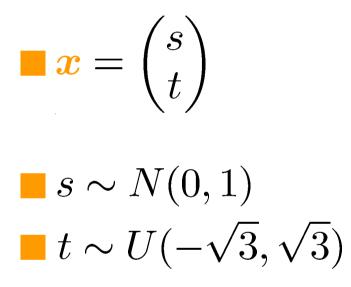
Gradient update rule is

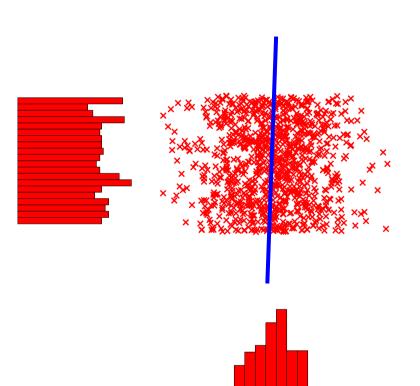
$$\boldsymbol{b} \longleftarrow \boldsymbol{b} + \varepsilon \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3 \right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3$$

Don't forget normalization: $b \leftarrow b/||b||$ Homework: Prove them!

Examples

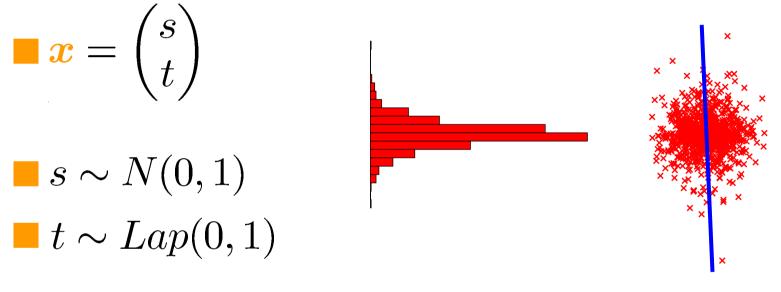
$$d = 2, m = 1, n = 1000$$

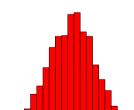




Examples (cont.)

$$d = 2, m = 1, n = 1000$$





Important Notice

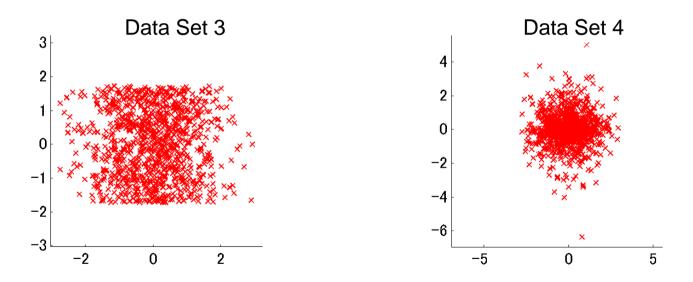
195

There will be no class next week (Jun. 26th)

Homework

1. Implement PP and reproduce the 2dimensional examples shown in the class.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis



You may create similar (or more interesting) data sets by yourself.

Homework (cont.)

2. Prove the following for centered and sphered samples $\{\widetilde{x}_i\}_{i=1}^n$:

A) Covariance matrix is given by

$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{\boldsymbol{x}}_{i}\widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}$$

B) J_{PP} under $\|\boldsymbol{b}\| = 1$ is given by

$$J_{PP}(\boldsymbol{b}) = \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right)^2$$

C) Gradient $\partial J_{PP}/\partial b$ is given by

$$\frac{\partial J_{PP}}{\partial \boldsymbol{b}} = 2\left(\frac{1}{n}\sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right) \left(\frac{4}{n}\sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3\right)$$