Load Resistance

Hall Current

Studies of Closed Cycle MHD Electrical Power Generation at Tokyo Institute of Technology

Yoshihiro OKUNO

Department of Energy Sciences Tokyo Institute of Technology

Contents

1. Introduction

2. Experimental Studies of Closed Cycle MHD

Electrical Power Generation

- Shock-Tunnel Facility (1970?)
- Blow-Down Facility "Fuji-1 " (1981 1999)
- Closed Loop Experimental Facility (2002)

3. Numerical Simulation of MHD Nonequilibrium plasma flow

- > MHD Flow Behavior and Performance of MHD generator
- > Improvement by applying RF Electromagnetic Filed

Numerical Simulation of MHD Nonequilibrium Plasma Flow

- **O** Basic Equations
- **O** Plasma Structure and Behavior

Plasma & Fluid Flow in MHD Generator

Supersonic (compressible) Flow –

Development and Separation of Boundary Layer,

Shock wave, Turbulence

Plasma Electrical Conducting Flow –

Nonequilibrium Ionization, (weakly) magnetized Plasma,

Self-excited electromotive force

Plasma Instability => Self-organized Plasma Structure

MHD Interaction-

Lorentz Force – Energy Conversion

 $E_s = \rho c_v T_g + \frac{1}{2} \rho u^2$

Governing Equations of MHD Flow

Continuity Equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

Momentum Equation:

$$\frac{\partial}{\partial t}(\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = \vec{j} \times \vec{B} - \nabla p - \vec{P}_L$$

Energy Equation:

$$\frac{\partial E_s}{\partial t} + \nabla \cdot \{ (E_s + p)\vec{u} \} = \frac{\left|\vec{j}\right|^2}{\sigma} + \vec{u} \cdot (\vec{j} \times \vec{B}) - Q_L$$

Equation of State:

$$p = \rho RT_g$$

Governing Equation of Electromagnetic field

Generalized Ohm's Law (from Momentum Equation of Electrons)

$$\vec{j} + \frac{\beta}{|B|}(\vec{j} \times \vec{B}) = \sigma \left(\vec{E} + \vec{u} \times \vec{B} + \frac{\nabla p_e}{en_e}\right)$$

Hall Parameter
$$\beta = \overline{\varpi}_e \tau_e = \frac{eB}{m_e v_e}$$
 (rad),
Electrical Conductivity $\sigma = \frac{e^2 n_e}{m_e v_e}$ (S / m)

Maxwell's Equations

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \quad \nabla \times \vec{H} - \frac{\partial D}{\partial t} = \vec{j}, \quad \nabla \cdot D = \rho^{\mathcal{C}}, \quad \nabla \cdot B = 0$$

MHD Approximation:

- neglecting displacement current
- charge neutrality
- Low magnetic Reynolds number

$$\nabla \times \vec{E} = 0, \qquad \nabla \cdot \vec{j} = 0$$

Ar/Cs Nonequilibrium Plasma

Two-Temperature model of Nonequilibrium Plasma

Ion Continuity Equation:

$$\frac{\partial n_i^+}{\partial t} + \nabla \cdot (n_i^+ \vec{u}) = k_{f_i} n_e n_i - k_r n_e^2 n_i^+ \qquad i = seed, \text{ noble gas}$$

Collisional Ionization – Three-Body (Collisional) Recombination

Charge Neutrality:

$$n_e = \sum_i n_i^+$$

Electron Energy Equation:

$$\frac{\partial U_e}{\partial t} + \nabla \cdot (U_e \vec{u}_e) = \vec{j} \cdot (\vec{E} + \vec{u} \times \vec{B}) - p_e \nabla \cdot \vec{u}_e - \nabla \cdot \vec{q}_e - \sum_h \frac{2m_e}{m_h} v_{eh} n_e \frac{3}{2} k(T_e - T_g) - \dot{R}$$
Joule Heating
$$U_e = \frac{3}{2} n_e k T_e + \sum_i n_i^+ \varepsilon_i$$
Collision Loss

Basic Equations of Nonequilibrium Plasma MHD Flow

Nonequilibrium Two-Temperature Plasma Model:

$$\begin{aligned} \frac{\partial n_i^{\top}}{\partial t} + \nabla \cdot (n_i^{\dagger} \vec{u}) &= k_{f_i} n_e n_i - k_r n_e^2 n_i^{\dagger} & n_e = \sum_i n_i^{\dagger} \\ \vec{j} + \frac{\beta}{B} (\vec{j} \times \vec{B}) &= \sigma (\vec{E} + \vec{u} \times \vec{B} + \frac{\nabla p_e}{en_e}) \\ \frac{\partial U_e}{\partial t} + \nabla \cdot (U_e \vec{u}_e) &= \vec{j} \cdot (\vec{E} + \vec{u} \times \vec{B}) - p_e \nabla \cdot \vec{u}_e - \nabla \cdot \vec{q}_e - \sum_h \frac{2m_e}{m_h} v_{eh} n_e \frac{3}{2} k (T_e - T_g) - \dot{R} \end{aligned}$$

MHD Flow Equations:

$$\frac{\partial}{\partial t} \rho_{t}^{2} + \nabla \cdot (\rho \vec{u}) = 0 \qquad p = \rho RT_{g}^{2}$$

$$\frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = \vec{j} \times \vec{B} - \nabla p - \vec{P}_{L}^{2}$$

$$\frac{\partial}{\partial t} E_{s}^{2} + \nabla \cdot \{(E_{s} + p)\vec{u}\} = \frac{\left|\vec{j}\right|^{2}}{\sigma} + \vec{u} \cdot (\vec{j} \times \vec{B}) - Q_{L}^{2}$$

Maxwell's Equations: $\nabla \times \vec{E} = 0$, $\nabla \cdot \vec{j} = 0$

Numerical methods

Fluid Flow Equations (Continuity Equation, etc)

Hyperbolic type Equations:

MacCormack Method,

TVD (Total Variation Diminishing) Method

CIP (Cubic Interpolated Propagation) Method, etc

Electromagnetic Field Equations

Generalized Ohm's Law + Maxwell' Equations

=> Elliptic Equation (for electric potential function)

Finite Differential Method, Final Element Method

+ Bi-CGSTAB method, etc

Characteristic Times

Characteristic Times :

Electron Temperature ($\sim 0.1 \, \mu$ s)

- < Electron Number Density ($\sim \mu$ s)
- < MHD Fluid Flow (~ms)
- < Connection to AC Line (~10ms)
- < System Start-up & Shut-down (~s, ~hrs.)

Disk MHD Generator

Nonuniform Plasma Structure in Disk Generator

Shock Tube Experiments

r- θ 2-D Simulation

Flow Behavior under Different Back Pressure

B=0 High back pressure

MHD Interaction B≠0 High back pressure

Flow Behavior in Disk Generator (r-z 2-D Simulation)

non- $B \Rightarrow$ applying B

Tokyo Institute of Technology Energy Sciences

Back Pressure:10kPa

Distribution of Radial Velocity

3-D plasma Structure in Disk Generator

Plasma Behavior in Disk Generator

Electron temperature Distribution in Disk Generator (r-z plane : 3-D Simulation)

In main flow...

Electron temperature distribution is uniform in *z*-direction which is parallel to the magnetic field.

In boundary layer...

Electron temperature is decreased.

Decrease in the Joule heating Increase in the collision frequency

Decrease in the gas velocity Increase in the number density of heavy particles

3-D Plasma Behavior in Disk Generator

3-D Distributions of Electron Temperature

Flow Behavior in Disk Generator (r-z plane : 3-D Simulation)

Efficiencies of in a Shuck-tunnel Driven Disk MHD Generator

Hall Potential and Static Pressure Distributions in a Shuck-tunnel Driven Disk MHD Generator

Disk MHD Generator in the Closed Loop Experimental Facility (CLEF) for Continuous Operation

MHD Generator Channel

Height [mm]
3.3 4.5

Velocity Streamlines of Non-MHD flow (CLEF)

Velocity Streamlines of MHD flow (CLEF)

Effect of Pressure Ratio P.R. on Enthalpy Extraction Ratio E.E. (CLEF)

Minimum E.E. is obtained for P.R. = 4.0

Improvement by applying RF Electromagnetic Filed

Working gas	He-Cs
Thermal inlet	117 [MWt]
Inlet stagnation temperature	2000 [K]
Inlet stagnation pressure	3.0 [atm]
Magnetic flux density	6.0 [Tesla]
Inlet Mach number	2.2
Frequency of rf power	13.56×10 ⁶ [Hz]

Plasma structure with different rf power for sf = 1.0×10^{-5}

Tokyo Institute of Technology Energy Sciences

Improvement by applying RF Electromagnetic Filed

Effect of different rf power on performance of MHD generator Ratio of increased power and rf Joule heating to thermal input versus seed fraction

Closed Cycle MHD Power Plant

1) Closed Cycle MHD Single Cycle

2) CCMHD / ST or CCMHD / GT Combined Cycle

3) CCMHD / GT / ST Triple Combined Cycle

Closed cycle MHD single system

Total Efficiency = 60%

CCMHD単独発電システム

60万kW級 CCMHD単独発電システム(プラント熱効率60%)

ディスク形MHD発電機

Bo = 7.0T Stored Energy=2490MJ V \sim 5.8 kV I \sim 134 kA

熱入力2590MWディスク形CCMHD発電機断面図 (E.E.=30%, E.A.=85%)

MHD/ガスタービン/蒸気タービン トリプルコンバインド発電システム

改良型炭酸ガス液化回収式固体酸化物形燃料電池・クローズドサイクルMHD複合発電システムの構成とエネルギーバランス

(出典: 乾義尚ら, 電学論B, 123, 9, 1097~1104 (平15-9))

Numerical Simulation Related to MHD Nonequilibrium Plasma Flow

MHD Plasma Behavior

Plasma Behavior under rf electromagnetic Field, FIP (Frozen Inert gas Plasma) MHD Concept, *Pulse Detonation* MHD Power Generation, *Laser Driven* MHD Power Generation, Air ICP MHD Nonequilibrium Plasma Behavior, etc

Closed Loop Experimental Facility

Operation Procedure, Prediction of Performance, Transient Phenomena, Heat Transfer, etc

MHD Acceleration

MHD Accelerator, **MPD Thruster,** MHD Energy bypass Scramjet Engine, etc

Flow Control

Drag Reduction, Thermal Protection, etc