Load Resistance

Hall Current

Studies of Closed Cycle MHD Electrical Power Generation at Tokyo Institute of Technology

Yoshihiro OKUNO

Department of Energy Sciences Tokyo Institute of Technology

Contents

1. Introduction

2. Experimental Studies of Closed Cycle MHD

Electrical Power Generation

- Shock-Tunnel Facility (1970?)
- Blow-Down Facility "Fuji-1 " (1981 1999)
- Closed Loop Experimental Facility (2002)

3. Numerical Simulation of MHD Nonequilibrium plasma flow

- > MHD Flow Behavior and Performance of MHD generator
- > Improvement by applying RF Electromagnetic Filed

Principle of MHD Electrical Power Generator (Energy converter to the electricity)

Power Density (= Power / Volume)

$$P \propto uB \cdot j \propto \sigma u^2 B^2$$

$$\therefore j \propto \sigma u B$$

- Power density (W/m³)
- Velocity of fluid (m/s) \Rightarrow Supersonic Flow
- $: Magnetic flux density (T) \Rightarrow Superconducting$
- : Current density (A/m²)
- σ : Electrical conductivity (S/m) \Rightarrow Plasma

Why MHD? - Plant Efficiency -

MHD System & Working Fluid

Open Cycle MHD Power Generation

Combustion Gas (\sim 3000K) + Seed (K₂CO₃ \sim 1%)

Thermal Equilibrium Plasma (Te ~ Tg) σ < 1~10 S/m

Efficient Coal Utilization

Closed Cycle MHD Power Generation

Inert Gas (~2000K) + Seed (K, Cs 0.1-0.01%)

Non-Equilibrium Plasma (Te > Tg) $\sigma \sim 100$ S/m

Various Energy Source Utilization

Highly Efficient Energy Converter to produce the Electricity

Open Cycle MHD Power Generation System

1 燃焼器, 2 ノズル, 3 MHD発電機, 4 超電導磁石, 5 ディフューザ, 6 空気予熱器(再生), 7 ボイラ, 8 脱硝器,シード回収装置, 9 シード再生装置, 10 インバータ, 11 煙突, 12 蒸気タービン, 13 空気圧縮機, 14 発電機, 15 復水器, 16 ポンプ, 17 電気出力

Targeted efficiency : 58-60 %

Closed Cycle MHD Power Generation System

Disk Shaped MHD Generator

to have a high Hall parameter.

Azimuthal Faraday (uxB) Current ✓ Uniform nonequilibrium plasma

=> High performance

High Power Density ✓ Compact generator ✓ Compact SCM

Simple Ring shaped electrode

- ✓ small voltage drop
- ✓ rotating plasma (no arc spot)
 => durability
- ✓ simple DC-AC converter system

Enthalpy Extraction Ratio & Isentropic Efficiency

Experimental Facilities

 "Fuji1-1" Blow- down facility Magnetic flux density ~4.6 T (SCM) Ar / Cs Time Duration ~1minute,

Shock- tunnel facility
 Magnetic flux density ~3T
 He / Cs or Ar / Cs
 Time duration ~10 msec,

Improvement in Enthalpy Extraction Ratio and Isentropic Efficiency

Power Generation Experiments In Fuji-1 Blow-Down Facility

Main objective in the Fuji-1 MHD power generation experiments was

to demonstrate the high enthalpy extraction ratio (electrical output / thermal input)

with well reproducibility for a period of several tens of seconds using a disk shaped generator.

Fuji-1 Blow-Down Facility

Fuji-1 Blow-Down Facility

Fuji-1 Blow-Down Facility

Disk MHD Generator

Disk MHD Generator installed in Fuji-1 Facility

Produced by Prof. Yamasaki

Time variations of working conditions and output power (Run A4127)

Typical Experimental Conditions and Results

Run Number	A4118	A4126	A4127
Stagnation Pressure [MPa]	0.434	0.545	0.351
Stagnation Temperature [K]	1980	1973	1914
Thermal Input [MW]	3.24	3.99	2.57
Seed Fraction [×10 ⁻⁴]	2.9	3.7	3.3
Load Resistance [Ω]	0.48	0.48	0.48
Max.Power Output [kW]	506	544	410
Max.Enthalpy Extraction [%]	15.6	13.6	16.0

Power Generation Experiments in Shock-Tunnel Facility

- **O** Demonstration of high performance
- O Clarification of Non-equilibrium plasma and MHD Flow behavior

Shock-tube Facility

Typical discharge structure

Radial-flow generator

Swirl-flow generator

Shock Tunnel facility :

- Plasma behavior : Ionization Instability => Fully Ionized Seed
- >Demonstration of High Enthalpy Extraction Ratio and Isentropic Efficiency

Discharge Structure in Disk MHD Generator with Inlet Swirl Vanes From Prof. Yamasaki

Black and white

Color

(A) S.F.=1.60x10^{-4,} R_L=0.16 ohm (B) S.F.=1.66x10^{-3,} R_L=0.14 ohm E.E. =10.1 %, η_{ad} = 21.8 % E.E. =18.6 %, η_{ad} = 38.6 %

Discharge Structure in Disk MHD Generator with Inlet Swirl Vanes

Flow with Shock Wave

S.F.=3.8x10^{-4,} R_L=0.34 ohm E.E. =18.4 %, η_{ad} = 34.9 % S.F.=3.1x10^{-4,} R_L=0.21 ohm E.E. =20.2 %, η_{ad} = 48.3 %

From Prof. Yamasaki

Typical Experimental Conditions and Results

Generator Channel	RLN1	RLN2	IS-ź	1(Swirl)
Working gas	Ar/Cs	Ar/Cs	Ar/Cs	He/Cs
Stagnation pressure (MPa)	0.24	0.28	0.24	0.14
Stagnation temperature (K)	2000	~ 2500	2400	~ 2200
Thermal Input (MW)	1.57	3.48	2.13	3.61
A _{exit} / A _{throat}	14.4	4.25	5.91	5.91
Seed fraction	9.0x10 ⁻⁴	12.4x10 ⁻⁴	6.4x10 ⁻⁴	4.5x10 ⁻⁴
Load resistance ($\mathbf{\Omega}$)	0.22	0.10	0.14	0.62
Magnetic flux density (T)	2.7	3.0	3.0	3.0
Output Power (kW)	408	569	540	1112
Enthalpy Extraction Ratio (%)	26.5	17.2	25.4	30.8
Isentropic efficiency (%)	37.4	46.2	54.3	63

Thermal Input based on 0 K

Current Status and Target

Shock- tunnel facility Time duration ~10 msec

Improvement of Generator Performance by Applying RF Electromagnetic Field

Tokyo Institute of Technology Energy Sciences

Shock tunnel driven MHD facility

Plasma Structure

Without applying RF-power

With applying RF-power

Output Power against Seed Fraction

Influence of Difference in External Load Resistance

Voltage-Current Characteristics

Shock tunnel + SCM Facility => To Next Stage !

Studies of MHD Electrical Power Generation with Closed Loop Experimental Facility

Y. Okuno, T. Murakami, H.Yamasaki

Department of Energy Sciences **Tokyo Institute of Technology**

Contents

Closed Loop Experimental Facility for CCMHD

- 1. Background and Objectives
- 2. System Layout
- 3. Numerical Simulation
- 4. Schedule & Summary

Supersonic Closed Loop Experimental Facility for CCMHD Power Generation

Closed Loop Experimental Facility

Supersonic Closed Loop Experimental Facility for CCMHD Power Generation

Main objectives

The aim of the experiment with "CLEF" is

not to achieve the large output power and high enthalpy extraction ratio

but to demonstrate the long time continuous power generation with high temperature heat recovery.

Specifications

	CLEF	Fuji-1
Stagnation Pressure [MPa]	~ 0.4	0.43
Stagnation Temperature [K]	1850 - 1900	1980
Magnetic Flux Density [T]	4.0	4.6
Thermal Input [MW]	0.5	3.2
Seed Fraction [$\times 10^{-4}$]	< 3	2.9
Load Resistance [Ω]	0 - 10	0.48
Pressure Ratio	< 8 (Comp.)	~ 10 (Tank)
Max.Enthalpy Extraction [%]	5~10	15.6
Max.Power Output [kW]	25 ~ 50	506
Duration of Power Generation	> 10min., 1hour, 1day,,,	~ 1min.

Closed Loop for CCMHD Power Generation

 $9m(W) \times 4m(H)$

Closed Loop for CCMHD Power Generation

Recuperator

High Temperature Gas Heater

Heater No.1 (~100kW) 890K => 1200K

Heater No.2 (~130kW) 1180K => 1680K

Heater No.3 (~ 90kW) 1650K => 1900K

=> **1850K** (exit of hot duct)

Tungsten Heater Element / Ceramic Thermal Insulator

Liquid Helium Free Superconducting Magnet

Operating temperature : 4 K Type : 2 stage GM (Gifford-McMahon) cryocooler Magnetic flux density : 4.0 T (center) - 5.4 T (edge) Bore diameter : 400 mm (vertical)

Disk MHD Generator

MHD Generator Channel

Radius [mm]	Height [mm]
55 (throat) 65 (anode)	3.3 4 5
115 (cathode)	10.3
A exit / A throat	6.5

Energy and Pressure Balance (q1d - calculation)

Progress and Plan

2003 - 2004: Room temp. argon gas circulation test (Compressor operation, etc.) <= Successfully demonstrated 2004 - 2005: 700K, 1300K argon gas circulation test (Heater operation, etc) <= Successfully demonstrated 2006 - 2007: 1650K argon gas circulation test <= Successfully demonstrated (2006/06/15-19)> 1850-1900K argon gas circulation test (High temp. full operation) 2007 - :MHD power generation test

(=> Long time continuous operation)

Typical distributions of gas properties along the loop

No power generation

(● : experiment, — : q1d - simulation)

Ar Gas Circulation Test in CLEF (Run12)

Closed Cycle MHD Power Generation

Highly Efficient Energy Converter to Electricity with High Temperature Gas

- ➢ Various Energy Source Utilization (FF, GCR, STE, BE) ⇔ Open Cycle MHD
- Heat Cascading (GT,ST Combined) & Heat Recovery System (MHD Single)
- Partial Load Operation & quick Response (MHD Plasma Supersonic Flow)

Research and Development

- Demonstration of <u>More Highly Efficient</u> Power Generation
- Development of High Performance <u>Heat Exchanger</u>
- More Precise <u>Design and Evaluation</u> of CCMHD Power Generation System

Research Activities at Tokyo Institute of Technology

- Plasma Stability and Power Generation ---- Ionization Instability => Fully Ionized Seed
- Shock Tunnel facility --- Highest Enthalpy Extraction Ratio and Isentropic Efficiency
- Fuji-1 Blow down Facility --- Power Generation demonstration during 1 minute
- Closed Loop Experimental Facility --- Continuous Electrical Power Generation !