Pattern Information Processing¹⁴⁹ Cross-Validation

Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Model Parameters

- In the process of parameter learning, we fixed model parameters.
- For example, quadratically constrained least-squares with Gaussian kernel models
 - Gaussian width: c (> 0)
 - Regularization parameter: $\lambda \ (\geq 0)$

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$
$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|^2}{2c^2}\right)$$

$$J_{QCLS}(\boldsymbol{\alpha}) = J_{LS}(\boldsymbol{\alpha}) + \lambda \|\boldsymbol{\alpha}\|^2$$

Different Model Parameters¹⁵¹

Model parameters strongly affect learned functions.

Determining Model Parameters¹⁵²

We want to determine the model parameters so that the generalization error (expected test error) is minimized.

$$G = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{t}) - f(\boldsymbol{t}) \right)^2 q(\boldsymbol{t}) d\boldsymbol{t}$$
$$\boldsymbol{t} \sim q(\boldsymbol{x})$$

However, f(x) is unknown so the generalization error is not accessible.
q(x) may also be unknown.

Model Selection

Prepare a set of model candidates.

$$\{\mathcal{M}_i \mid \mathcal{M}_i = (c_i, \lambda_i)\}$$

Estimate generalization error for each model. $\widehat{G}(\mathcal{M}_i)$

Choose the one with minimum estimated generalization error.

$$\hat{\mathcal{M}} = \operatorname*{argmin}_{\mathcal{M} \in \{\mathcal{M}_i\}_i} \widehat{G}(\mathcal{M})$$

Assumptions

Training input points: $x_i \stackrel{i.i.d.}{\sim} q(x)$ Training output values: $y_i = f(x_i) + \epsilon_i$ Noise ϵ_i : i.i.d., mean 0, variance σ^2

$$\mathbb{E}_{\boldsymbol{\epsilon}}[\epsilon_i] = 0 \qquad \mathbb{E}_{\boldsymbol{\epsilon}}[\epsilon_i \epsilon_j] = \begin{cases} \sigma^2 & (i=j) \\ 0 & (i\neq j) \end{cases}$$

Extra-Sample Method

155

Suppose we have an extra example (x', y')in addition to $\{(x_i, y_i)\}_{i=1}^n$.

Test the learned function using the extra example.

$$\widehat{G}_{extra} = \left(\widehat{f}(\boldsymbol{x}') - y'\right)^2$$

Extra-Sample Method (cont.)¹⁵⁶

 \widehat{G}_{extra} is unbiased w.r.t. x' and ϵ' (except σ^2) $\mathbb{E}_{x'}\mathbb{E}_{\epsilon'}[\widehat{G}_{extra}] = G + \sigma^2$

Proof:

$$\mathbb{E}_{\boldsymbol{x}'} \mathbb{E}_{\boldsymbol{\epsilon}'} \left(\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}') - \boldsymbol{\epsilon}' \right)^2$$

= $\mathbb{E}_{\boldsymbol{x}'} \mathbb{E}_{\boldsymbol{\epsilon}'} \left[(\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}'))^2 - 2\boldsymbol{\epsilon}' (\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}')) + \boldsymbol{\epsilon}'^2 \right]$
= $G + \sigma^2$

Gextra may be used for model selection.

 However, in practice, such an extra example is not available (or if we have, it should be included in the original training set!).

Holdout Method

Idea: artificially create an extra sample

- 1. Divide training set $\{(x_i, y_i)\}_{i=1}^n$ into $\{(x_i, y_i)\}_{i \neq j}$ and (x_j, y_j) .
- 2. Train a learning machine using $\{(x_i, y_i)\}_{i \neq j}$ $\hat{f}_j(x) \leftarrow \{(x_i, y_i)\}_{i \neq j}$

3. Test it using the holdout sample (x_j, y_j)

$$\widehat{G}_j = \left(\widehat{f}_j(\boldsymbol{x}_j) - y_j\right)^2$$

Almost Unbiasedness of Holdout¹⁵⁸ Holdout method is almost unbiased w.r.t. $\{x_i, \epsilon_i\}_{i=1}^n$:

$$\mathbb{E}_{\boldsymbol{x}_j} \mathbb{E}_{\epsilon_j} [\widehat{G}_j] = G_j + \sigma^2$$
$$\approx G + \sigma^2$$

$$G_j = \int_{\mathcal{D}} \left(\hat{f}_j(\boldsymbol{x}) - f(\boldsymbol{x}) \right)^2 q(\boldsymbol{x}) d\boldsymbol{x}$$

 $f_j(\boldsymbol{x}) \approx f(\boldsymbol{x})$ if n is large

However, \hat{G}_j is heavily affected by the choice of the holdout sample (x_j, y_j) .

Leave-One-Out Cross-Validation¹⁵⁹

Repeat the holdout procedure for all combinations and output the average.

$$\widehat{G}_{LOOCV} = \frac{1}{n} \sum_{j=1}^{n} \widehat{G}_j$$
$$\widehat{G}_j = \left(\widehat{f}_j(\boldsymbol{x}_j) - y_j\right)^2$$

LOOCV is almost unbiased w.r.t. $\{x_i, \epsilon_i\}_{i=1}^n$

 $\mathbb{E}_{\{\boldsymbol{x}_i\}_{i=1}^n} \mathbb{E}_{\{\epsilon_i\}_{i=1}^n} [\widehat{G}_{LOOCV}] \approx \mathbb{E}_{\{\boldsymbol{x}_i\}_{i=1}^n} \mathbb{E}_{\{\epsilon_i\}_{i=1}^n} [G] + \sigma^2$

k-Fold Cross-Validation

160

Randomly split training set into *k* disjoint subsets $\{\mathcal{T}_j\}_{j=1}^k$.

$$\widehat{G}_{kCV} = \frac{1}{k} \sum_{j=1}^{k} \widehat{G}_{\mathcal{T}_j}$$
$$\widehat{G}_{\mathcal{T}_j} = \frac{1}{|\mathcal{T}_j|} \sum_{i \in \mathcal{T}_j} \left(\widehat{f}_{\mathcal{T}_j}(\boldsymbol{x}_i) - y_i \right)^2$$
$$\widehat{f}_{\mathcal{T}_j}(\boldsymbol{x}) \longleftarrow \{ (\boldsymbol{x}_i, y_i) \mid i \notin \mathcal{T}_j \}$$

k-fold is easier to compute and more stable.

Advantages of CV

161

 Wide applicability: Almost unbiasedness of LOOCV holds for (virtually) any learning methods
 Practical usefulness: CV is shown to work very well in many practical applications

Disadvantages of CV

162

- Computationally expensive: It requires repeating training of models with different subsets of training samples
- Number of folds: It is often recommended to use k = 5, 10. However, how to choose k is still open.
- Input independence: Almost unbiasedness holds w.r.t. the expectation over both training input points and output noise, although training input points are specifically given.

Closed Form of LOOCV¹⁶³

Linear model
$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{b} \alpha_i \varphi_i(\boldsymbol{x})$$

Quadratically constrained least-squares

$$J_{QCLS}(\boldsymbol{\alpha}) = J_{LS}(\boldsymbol{\alpha}) + \lambda \|\boldsymbol{\alpha}\|^2$$

$$\widehat{G}_{LOOCV} = \frac{1}{n} \|\widetilde{\boldsymbol{H}}^{-1} \boldsymbol{H} \boldsymbol{y}\|^2$$

 $\boldsymbol{H} = \boldsymbol{I} - \boldsymbol{X} \boldsymbol{L}_{QCLS} \qquad \boldsymbol{L}_{QCLS} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{\top}$

 \widetilde{H} :same diagonal as H but zero for off-diagonal

Notification of Final Assignment

164

Apply supervised learning techniques to your data set and analyze it.

Mini-Workshop on Data Mining⁶⁵

- On July 25th (final class), we have a mini-workshop on data mining, instead of regular lecture.
- Some students (5-10?) present their data mining results.
- Those who give a talk at the workshop will have very good grades!

Mini-Workshop on Data Mining⁶⁶

- Application (just to declare that you want to give a presentation) deadline: July 11th
- Presentation: 10-15(?) minutes.
 - Specification of your data
 - Employed methods
 - Outcome
- OHP or projector may be used.
- Slides should be in English.
- Better to speak in English, but Japanese is also allowed.

Schedule

- June 27th
 July 4th
- July 11th

- : no class
- : regular lecture (model selection)
- : regular lecture (active learning) workshop registration
- July 18th July 25th
- : no class
- : mini-workshop