Pattern Information Processing:⁸² Robust Methods

Masashi Sugiyama (Department of Computer Science)

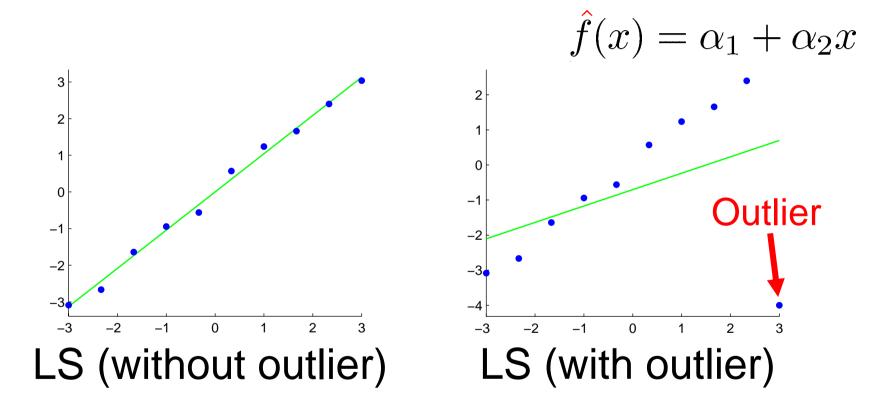
Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Outliers

- In practice, very large noise sometimes appears.
- Furthermore, irregular values can be observed by measurement trouble or by human error.
- Samples with such irregular values are called outliers.

Outliers (cont.)

LS criterion is sensitive to outliers.



Even a single outlier can corrupt the learning result badly!

Today's Plan

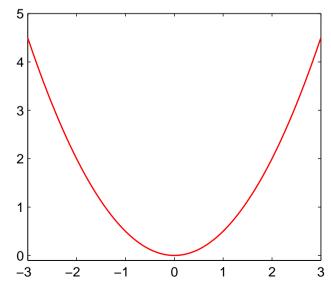
85

Robust learning method
How to obtain solusions
Standard form of quadratic programs
Robustness and sparseness

Quadratic Loss

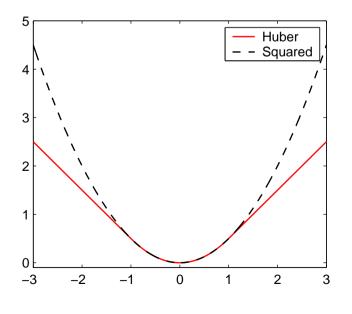
$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2$$

- In LS, goodness-of-fit is measured by the squared loss.
- Therefore, even a single outlier has quadratic power to "pull" the learned function
- The solution will be robust if the effect of outliers are deemphasized.



Huber's Robust Learning

$$\hat{\boldsymbol{\alpha}}_{Huber} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \begin{bmatrix} \sum_{i=1}^{n} \rho\left(\hat{f}(\boldsymbol{x}_{i}) - y_{i}\right) \end{bmatrix} \quad t > 0$$
$$\rho(y) = \begin{cases} \frac{1}{2}y^{2} & (|y| \le t) \\ t|y| - \frac{1}{2}t^{2} & (|y| > t) \end{cases}$$



 Squared-loss for nonoutliers with small errors.
 Linear penalty for outliers with large errors.

87

P. J. Huber, Robust Statistics, Wiley, New York, 1981.

How to Obtain Solutions

How to deal with Huber's loss?

Use the following lemma:

Lemma

$$\rho(y) = \min_{v \in \mathbb{R}} g(v)$$

$$g(v) = \frac{1}{2}v^2 + t|y - v|$$

Proof of Lemma

Here, we give a non-constructive proof.

See:

Mangasarian & Musicant, Robust linear and support vector regression, IEEE Trans. Pattern Analysis and Machine Intelligence, 22(9), 950-955,2000

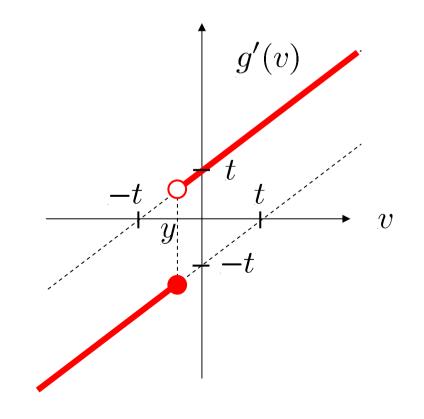
$$g(v) = \begin{cases} \frac{1}{2}v^2 + ty - tv & (v \le y) \\ \frac{1}{2}v^2 - ty + tv & (v > y) \end{cases}$$

$$g'(v) = \begin{cases} v-t & (v \le y) \\ v+t & (v > y) \end{cases}$$

90 **Proof of Lemma (cont.)** • If $-t \le y \le t$, g(v) is minimized at v = y. Then

$$\rho(y) = g(y) = \frac{1}{2}y^2$$

Note: g(v) is continuous

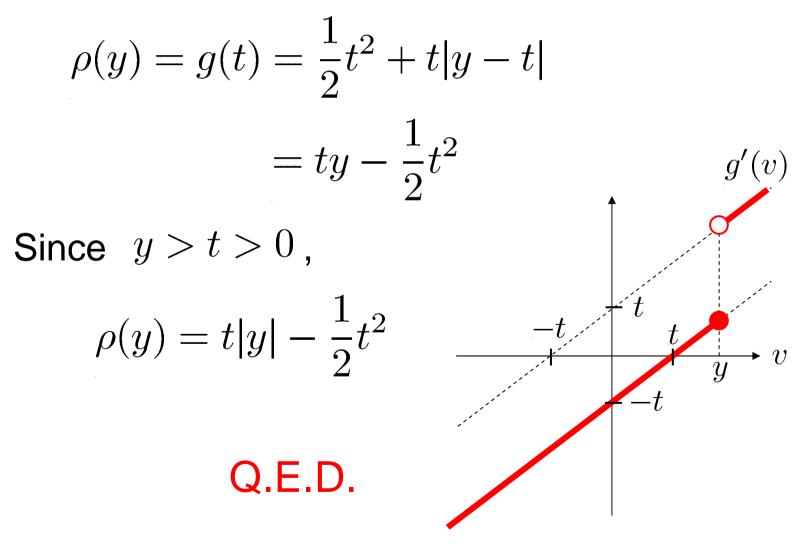


91 **Proof of Lemma (cont.)** • If y < -t, g(v) is minimized at v = -t. Then

$$\rho(y) = g(-t) = \frac{1}{2}t^{2} + t|y+t|$$

= $-ty - \frac{1}{2}t^{2}$
Since $y < -t < 0$,
 $\rho(y) = t|y| - \frac{1}{2}t^{2}$
 y^{-t}
 t
 y^{-t}
 t
 t
 y^{-t}
 t
 t
 y^{-t}
 t
 t
 v

Proof of Lemma (cont.) • If y > t, g(v) is minimized at v = t. Then



How to Obtain Solutions (cont.)⁹³
Using
$$\rho(y) = \min_{v \in \mathbb{R}} \left[\frac{1}{2}v^2 + t|y - v| \right]$$

 \sim

we have

$$\hat{\boldsymbol{\alpha}}_{Huber} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}} \left[\frac{1}{2} \|\boldsymbol{v}\|^{2} + t \|\boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y} - \boldsymbol{v}\|_{1} \right]$$

$$\boldsymbol{X}_{i,j} = \varphi_{j}(\boldsymbol{x}_{i})$$

$$\hat{\boldsymbol{\alpha}}_{Huber} \equiv \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}} \left[\sum_{i=1}^{n} \rho \left(\hat{f}(\boldsymbol{x}_{i}) - y_{i} \right) \right]$$

How to Obtain Solutions (cont.)⁹⁴

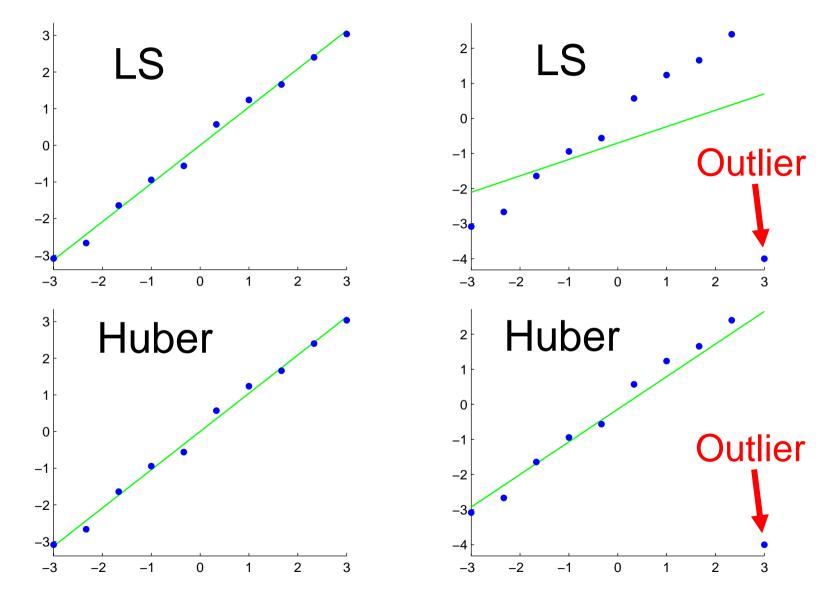
Trick to avoid absolute value:

$$\| \boldsymbol{X} \boldsymbol{lpha} - \boldsymbol{y} - \boldsymbol{v} \|_1 = \min_{\boldsymbol{u} \in \mathbb{R}^n} \left[\sum_{i=1}^n u_i
ight]$$

subject to
$$-u \leq X\alpha - y - v \leq u$$

 \hat{lpha}_{Huber} is given as the solution of

$$\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}} \left[\frac{1}{2} \|\boldsymbol{v}\|^{2} + t \sum_{i=1}^{n} u_{i} \right]$$
subject to $-\boldsymbol{u} \leq \boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y} - \boldsymbol{v} \leq \boldsymbol{u}$



Robust and Sparse

- Huber's method does not generally provide a sparse solution.
- Combining Huber's loss with ℓ_1 constraint.

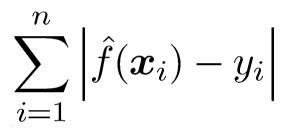
$$\hat{\boldsymbol{\alpha}}_{SparseHuber} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \rho \left(\hat{f}(\boldsymbol{x}_{i}) - y_{i} \right) \right]$$

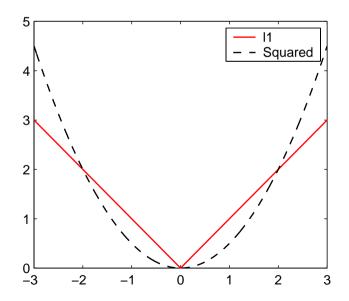
subject to $\|\boldsymbol{\alpha}\|_{1} \leq C$

- Solving quadratic programming problem is computationally rather demanding.
- Is it possible to make it faster?

I1 Loss

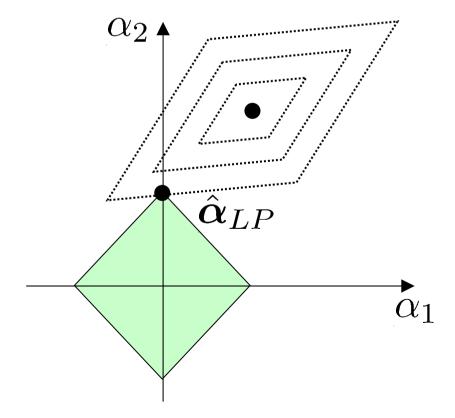
Quadratic term comes from Huber's loss. *l*₁-loss is linear.





Linear Programming Learning ⁹⁸ Combine ℓ_1 loss with ℓ_1 regularizer:

$$\hat{\boldsymbol{\alpha}}_{LP} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left| \hat{f}(\boldsymbol{x}_{i}) - y_{i} \right| + \lambda \sum_{i=1}^{b} |\alpha_{i}| \right]$$

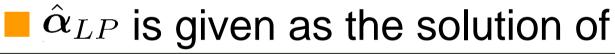


How to Obtain Solutions

Trick to avoid absolute value:

$$\|\boldsymbol{\alpha}\|_{1} = \min_{\boldsymbol{u} \in \mathbb{R}^{b}} \left[\sum_{i=1}^{b} u_{i}\right]$$

subject to $-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u},$



$$lpha, oldsymbol{u} \in \mathbb{R}^{b}, oldsymbol{v} \in \mathbb{R}^{n} \left[\sum_{i=1}^{n} v_{i} + \lambda \sum_{i=1}^{b} u_{i}
ight]$$

subject to $-oldsymbol{v} \leq oldsymbol{X} lpha - oldsymbol{y} \leq oldsymbol{v}$
 $-oldsymbol{u} \leq oldsymbol{lpha} \leq oldsymbol{u}$

Linearly Constrained Linear ¹⁰⁰ Programming Problem

Standard optimization software can solve the following form of linearly constrained linear programming problems.

$$\min_{oldsymbol{eta}} \langle oldsymbol{eta}, oldsymbol{q}
angle \ ext{ subject to } oldsymbol{V} oldsymbol{eta} \leq oldsymbol{v} \ oldsymbol{G} oldsymbol{eta} = oldsymbol{g}$$

Sparseness and Robustness¹⁰¹

	Sparse- ness	Robust- ness	Optimi- zation
ℓ_1 constrained LS	Yes	No	Quadratic
Huber's method	No	Yes	Quadratic
ℓ_1 constrained Huber	Yes	Yes	Quadratic
Linear programming	Yes	Yes	Linear

Homework

- Express the Huber learning problem in a standard form of quadratic programs.
- 2. Express the LP learning problem in a standard form of linear programs.

Homework (cont.)

- 2. For your own toy 1-dimensional data, perform simulations using
 - Linear/Gaussian kernel models
 - Huber/linear-programming learning
 - and analyze the results, e.g., by changing
 - Target functions
 - Number of samples
 - Noise level
 - Width of Gaussian kernel
 - Robust/regularization parameter