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Focus of This Course

There are 3 topics Iin learning research.
e Understanding human brains

e Developing learning machines

e Mathematically clarifying mechanism of learning

There are 3 types of learning.
e Supervised learning

e Unsupervised learning

e Reinforcement learning

Topics of supervised learning:
e Active learning

e Model selection
e Learning methods




Supervised Learning
As Function Approximation

Answer
(Output) _
4 f (x): Target function

Y Y

f (x) e M : Learned function

{x,,y,}l, : Training examples
M : Model

» Question
Xn (Input)

Using training examples { Xir Yi }inzl )
find a function f (x) from a model M
that well approximates the target function f(x).




Formal Notation and As.sumptionsf1

f(x) :Learning target function

D c R* :Domain of f(x)

x; . Training input point

yi = f(x;) +¢; :Training output value

€; :mean zero, independent and identically
distributed (“i.1.d.”) o .
Ee [EZ] — () Ee [67;63'] — { ° (Z - J)

(s, ;) }imq1 :Training examples
) :Learned function

f(z
M :Model



Generalization Error

We want to obtain f(z) such that output
values at unlearned test input points
can be accurately estimated.

Suppose t~ gq(x)
Expected test error (generalization error):

G = /D (7))~ 1®)) a(t)at

Goal: Obtain f(x) such that G is minimized.



Formal Description of Problems °
6= | (f)-1®) awat

Active learning: min G

{‘Bi}?:1

Model selection: n’/{ilnG

Learning methods: min G
fem



Today’s Plan

Models

e Linear models
e Kernel models

Learning methods
e | east-squares learning



Linear/Non-Linear Models

Model is a set of functions from which learning
result functions are searched.

We use a family of functions f(x)
parameterized by

o — (&1,0&2,...,&5)T

A

Linear model: f(x) is linear with respect to «
(Note: not necessarily linear with respect to x)
Non-linear model: Otherwise



Linear Models
f(a:) — Z Oéz'%'(m)

{pi(x)},_, :Linearly independent functions

For example, when d =1
e Polynomial

1,:13,x2, .. ,xb_l
e Trigonometric polynomial

l,sinx,cosx,...,sinkx,cos kx

b=2k+1



Multi-Dimensional Linear I\/Iodelslo

For multidimensional input (d > 1), tensor
product could be used.

f@y=> > >

11=110=1 1q=1
Qi g Pin (@) iy (23) - 01, (1Y)
= (2,22 )T

The number of parametersis b= c¢?, which
Increases exponentially w.r.t. d .

Infeasible for large d !



11

Additive Models

For large d, we have to reduce the number
of parameters.

Additive model:
d C
fl@)=> > ajpixD)
j=11i=1
The number of parameters is only b = cd.

However, additive model is too simple so its
representation capability may not be rich
enough in some application.




Kernel Models

Linear model:

{pi(x)})_; do not depend on {(x:, vi)} iy

Kernel model:

E o, K(x,x;)

K(x,z") :Kernel functlon
e.g., Gaussian kernel

/12
o o — /|
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Kernel Models (cont.) -

Put kernel functions at training input points.




Kernel I\/Iodels (cont.) +

E o, K(x,x;)

The number of parameters IS n, which is
Independent of the input dimensionality d .

Although kernel model is linear w.r.t. o,
the number of parameters grows as the
number of training samples increases.

Mathematical treatment could be different
from ordinary linear models (called “non-
parametric models” in statistics).



Summary of Linear Models

_Inear model (tensor):

High flexibility, high complexity
_Inear model (additive):.

_ow flexibility, low complexity

Kernel model:
Moderate flexibility, moderate complexity

Good model depends on applications.

Later in model selection, we discuss how
to choose appropriate models.
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Learning Methods e

Linear learning methods:

Parameter vector a = (a1, ao, ..., q
IS estimated linearly w.r.t.

)T
)T

Yy = (y17y27°°°7yn

Non-linear learning methods: Otherwise
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Linear Learning for

Linear Models / Kernel Models
f(w) — Z Oéz'%'(m)

In linear learning methods, a learned
parameter vector Is given by

& = Ly L :Learning matrix



Least-Squares Learning -

Learn « such that the squared error at
training input points is minimized:
a5 = argmin Jy g ()

a cRY
n

Tus(e) =3 (Fwd) —u:)

=1
= | Xa -yl

X = p;(x;) :Design matrix (n x b)
In the following, we assume rank (X) =b



How to Obtain Solutions

Extreme-value condition:
Viis(aps) =2X"(Xars —y) =0
) 65=(X'X)'X'y
Therefore, LS Is linear learning.
ars = Lpsy

Lis=(X"X)"'x'

If you are not familiar with vector-derivatives, see e.g,
“Matrix Cookbook” (http://2302.dk/uni/matrixcookbook.html)
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Example of LS
f(x) = Z@z’%‘(fﬁ)

Trigonometric polynomial model

1,sinz,cosx,...,sin1bx,cos1bx (b = 31)

%
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Homework

ZO"L :1: :1:@
Prove that the LS solution in kernel
models Is given by
ars = Lrsy
Lis=K'
Kz',j o K(CBZ, Cl?j)
(Kernel matrix)
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Homework (cont.)

For your own toy 1-dimensional data,
perform simulations using

e Gaussian kernel models
e |east-squares learning
and analyze the results when, e.qg.,
e Target functions
e Number of samples
e Noise level
e Width of Gaussian kernel

are changed.
Deadline: beginning of next class
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