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Focus of This CourseFocus of This Course

There are 3 topics in learning research.
Understanding human brains
Developing learning machines
Mathematically clarifying mechanism of learning

There are 3 types of learning.
Supervised learning
Unsupervised learning
Reinforcement learning

Topics of supervised learning:
Active learning
Model selection
Learning methods
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As Function Approximation

Supervised Learning 
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Formal Notation and AssumptionsFormal Notation and Assumptions

:Learning target function
:Domain of 

:Training input point
:Training output value

:mean zero, independent and identically 
distributed (“i.i.d.”)

:Training examples
:Learned function
:Model
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Generalization ErrorGeneralization Error

We want to obtain         such that output 
values at unlearned test input points          
can be accurately estimated.
Suppose
Expected test error (generalization error):

Goal: Obtain          such that     is minimized.
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Formal Description of ProblemsFormal Description of Problems

Active learning:

Model selection:

Learning methods:
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Today’s PlanToday’s Plan

Models
Linear models
Kernel models 

Learning methods
Least-squares learning
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Linear/Non-Linear ModelsLinear/Non-Linear Models

Model is a set of functions from which learning 
result functions are searched.
We use a family of functions         
parameterized by

Linear model: is linear with respect to
(Note: not necessarily linear with respect to )
Non-linear model: Otherwise
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Linear ModelsLinear Models

:Linearly independent functions
For example, when

Polynomial

Trigonometric polynomial



10
Multi-Dimensional Linear ModelsMulti-Dimensional Linear Models
For multidimensional input            , tensor 
product could be used.

The number of parameters is             , which 
increases exponentially w.r.t.     . 
Infeasible for large     !
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Additive ModelsAdditive Models

For large    , we have to reduce the number 
of parameters.
Additive model:

The number of parameters is only           .
However, additive model is too simple so its 
representation capability may not be rich 
enough in some application.
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Kernel ModelsKernel Models

Linear model:
do not depend on 

Kernel model:

:Kernel function
e.g., Gaussian kernel
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Kernel Models (cont.)Kernel Models (cont.)

Put kernel functions at training input points.
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Kernel Models (cont.)Kernel Models (cont.)

The number of parameters is    , which is 
independent of the input dimensionality     .
Although kernel model is linear w.r.t.     , 
the number of parameters grows as the 
number of training samples increases.
Mathematical treatment could be different 
from ordinary linear models (called “non-
parametric models” in statistics).
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Summary of Linear ModelsSummary of Linear Models

Linear model (tensor):
High flexibility, high complexity
Linear model (additive):
Low flexibility, low complexity
Kernel model:
Moderate flexibility, moderate complexity

Good model depends on applications. 
Later in model selection, we discuss how 
to choose appropriate models.



16
Learning MethodsLearning Methods

Linear learning methods:
Parameter vector                                   
is estimated linearly w.r.t.

Non-linear learning methods: Otherwise



17Linear Learning for
Linear Models / Kernel Models

Linear Learning for
Linear Models / Kernel Models

In linear learning methods, a learned 
parameter vector is given by

:Learning matrix
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Least-Squares LearningLeast-Squares Learning

Learn     such that the squared error at 
training input points is minimized:

In the following, we assume
:Design matrix
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How to Obtain SolutionsHow to Obtain Solutions

Extreme-value condition:

Therefore, LS is linear learning.

If you are not familiar with vector-derivatives, see e.g, 
“Matrix Cookbook” (http://2302.dk/uni/matrixcookbook.html)
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Example of LSExample of LS

Trigonometric polynomial model
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HomeworkHomework

1. Prove that the LS solution in kernel 
models is given by

(Kernel matrix)
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Homework (cont.)Homework (cont.)

2. For your own toy 1-dimensional data, 
perform simulations using 

Gaussian kernel models
Least-squares learning

and analyze the results when, e.g.,
Target functions
Number of samples
Noise level
Width of Gaussian kernel

are changed.
Deadline: beginning of next class


