Pattern Information Processing (パターン情報処理)

Masashi Sugiyama
(Department of Computer Science)
杉山 将(計算工学専攻)

Contact: W8E-505

sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Contents of This Lecture (1)

Syllabus (what I will provide in this course): Inferring an underlying input-output dependency from input and output examples is called supervised learning.

This course focuses on a statistical approach to supervised learning and introduces its basic concepts as well as state-of-the-art techniques.

Statistical machine learning

Contents of This Lecture (2)

- What you are expected to learn in this course:
 - How to use supervised learning methods
 - Ideas behind the methods
 - Novel research topics in supervised learning
 - Something useful in your own research/life

Grading

- Small reports
 - Almost every week
 - Deadline: next class
- Mini conference on supervised learning (final day)
 - Apply supervised learning techniques to your own data sets and analyze them!
- Final reports on the above issue

Brief Overview of the Course (1)

3 types of learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

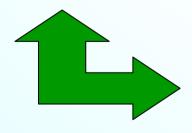
Brief Overview of the Course (2)

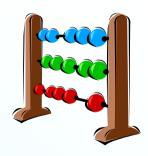
- Topics in supervised learning
 - Active learning
 - Model selection
 - Learning method

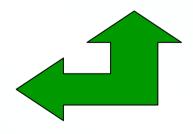
Textbook

- Handouts are provided if necessary.
- Pointers to related articles will be provided.
- I suppose you have elementary statistics and linear algebra. If not, please study them by yourself!

3 Topics in Learning Research







Understanding the brain (Physiology, psychology, neuroscience)

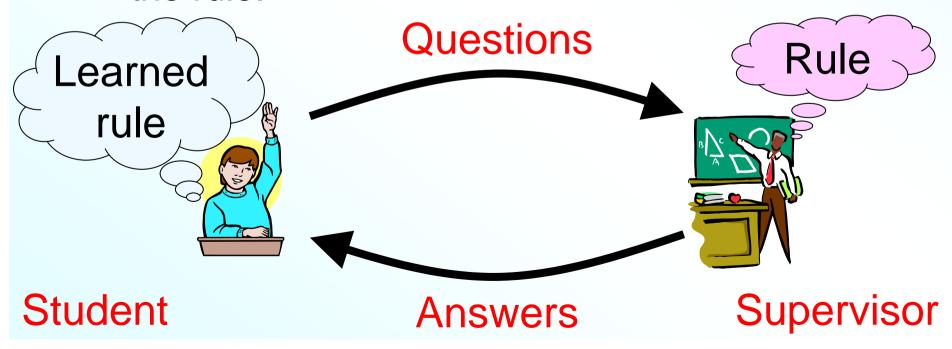
Developing learning machines
(Computer and electronic engineering)

Mathematically clarifying mechanism of learning (Computer and information science)

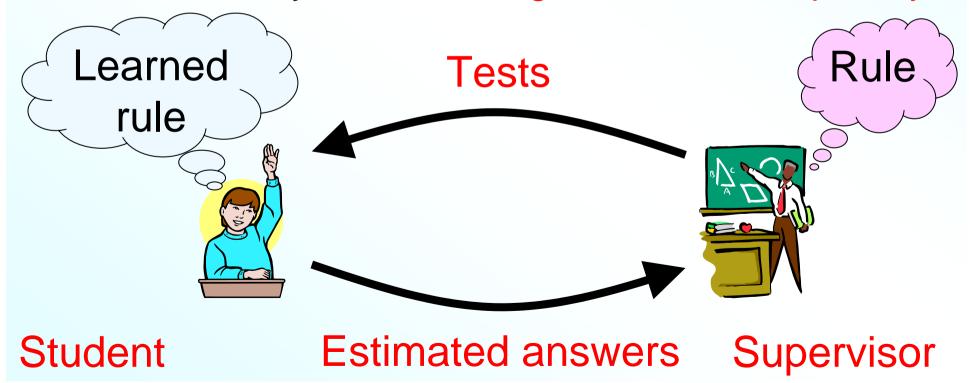
Three Types of Learning

Supervised learning (This course!)

Unsupervised learning

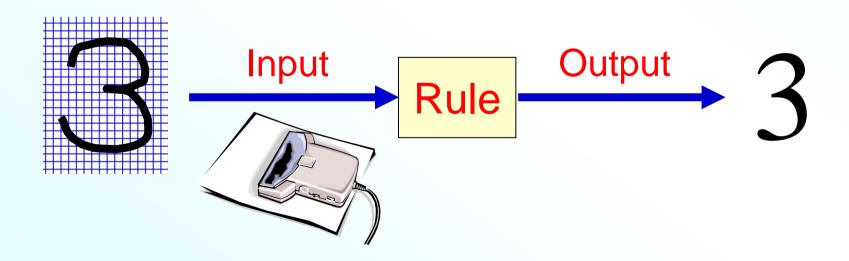


Reinforcement learning

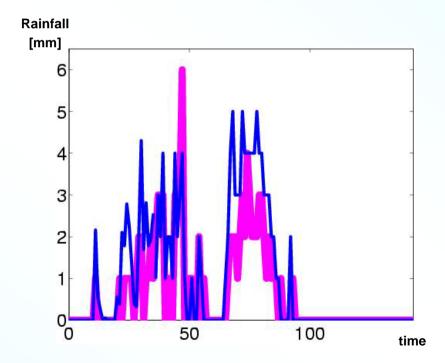

What Is Supervised Learning?

- The goal of supervised learning is to estimate an unknown input-output rule.
- You are allowed to ask questions to a supervisor ("oracle") who knows the rule.
- The supervisor answers your questions using the rule.

Generalization Capability


- Training examples: pairs of questions and answers.
- If the underlying rule can be successfully estimated, we can answer to the questions that we have never taught.
- Such an ability is called the generalization capability.

Hand-written number recognition

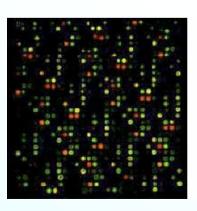

We want to recognize the scanned hand-written characters.

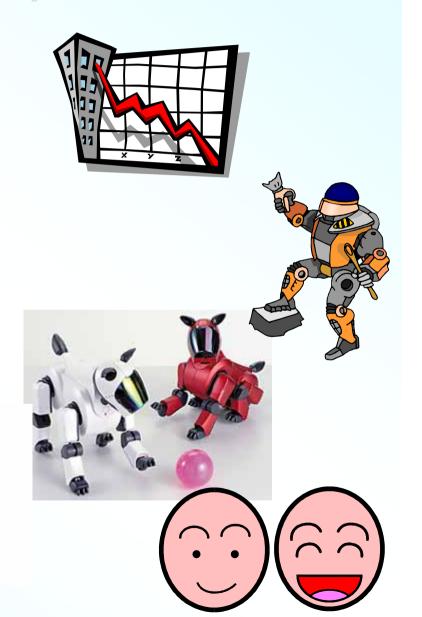
- Training examples consist of { (hand-written number, its recognition result) }.
- If underlying input-output rule is successfully learned, unlearned hand-written numbers can be recognized.

Rainfall Estimation

Using the past rainfall and weather radar data, we want to estimate the rainfall tomorrow.

- Training examples are {(past rainfall and radar data, rainfall the next day)}
- If the rule is successfully learned, we can estimate the future rainfall by using the past rainfall and radar data.





Other Examples

- Other examples are...
 - Stock price estimation
 - Robot motor control
 - Computer vision
 - Spam filter
 - DNA classification

Three Types of Learning

Supervised learning (This course!)

- Unsupervised learning ("Advanced data analysis", 2007 spring)
- Reinforcement learning

- You are given questions (input data) without answers (output data).
- The goal is to find "interesting" structure in the data.

Interestingness

- The goal of unsupervised learning depends on the definition of "interestingness":
 - Dimensionality reduction
 - Clustering
 - Blind source separation
 - Outlier detection

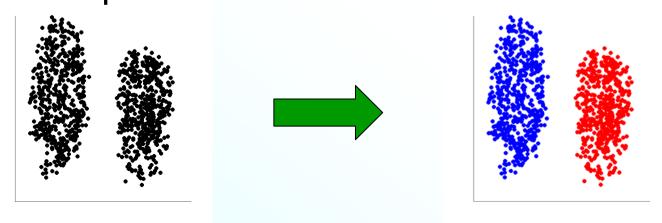
Dimensionality Reduction

- Dimensionality reduction (Embedding)
 - We are given high-dimensional data.
 - High-dimensional data is too complex to analyze: Even estimating the density is extremely difficult ("curse of dimensionality")
 - We want to have a low-dimensional expression of the data without losing intrinsic information.
 - Data visualization: Reduced data is less than equal to 3-dimensional.

- "Swiss Roll"
- Data is 3-D but it essentially lies on a 2-D manifold.
- We want to "unfold" the roll.

2D

3D 3D


- Embedding face images into 2D space.
- Images of the same face from different angles and lighting directions (64x64=4096D)

- Embedding hand-written numbers into 2D space.
- Images of different "2" (64x64=4096D)

Embedding lip images into 2D space.

Data Clustering

- Clustering
 - We want to divide the data into disjoint groups so that
 - Data in the same group have similar characteristics.
 - Data in different groups have different characteristics.
 - "Unsupervised classification"

"Connected" points seem to be in the same cluster, rather than "close" points.

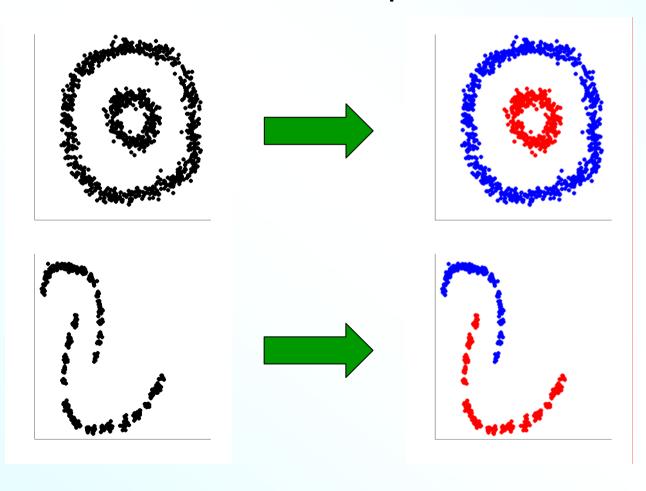
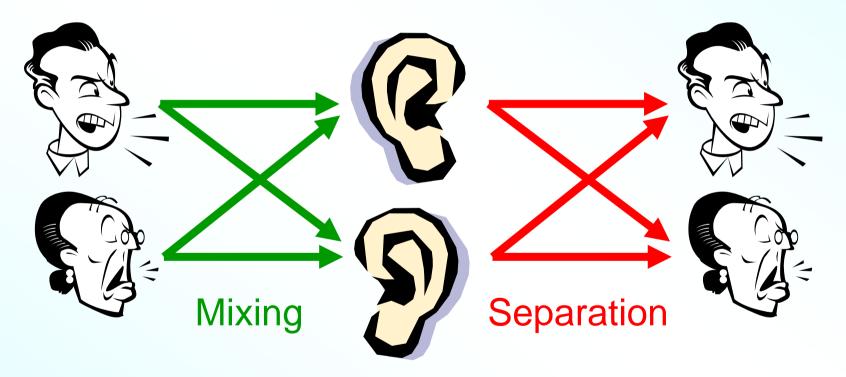


Image segmentation


Blind Source Separation

We can extract what a person is speaking in a noisy environment.

Syotoku-taishi can distinguish 10 conversations?

Blind Source Separation

Cocktail-party problem

We want to separate mixed signals into original ones.

	Mixed signal	Separated signal 1	Separated signal 2
Conversation			
+			
Conversation			
Conversation			
+			
Instrument			

From http://www.brain.kyutech.ac.jp/~shiro/research/blindsep.html

Outlier Detection

- When a new data sample is added, we want to know whether it is different from the samples collected so far.
- Also referred to as novelty detection, oneclass classification

Three Types of Learning

Supervised learning (This course!)

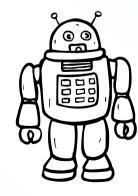
Unsupervised learning ("Advanced data analysis", 2007 spring)

Reinforcement learning
 (Prof. Shigenobu Kobayashi,
 Dept. of Computational intelligence and Systems Science)

What Is Reinforcement Learning?

- The goal of reinforcement learning is same as supervised learning, i.e., to estimate an unknown underlying rule.
- However, different from supervised learning, we are not allowed to ask questions to the teacher.
- Instead, we can get rewards (reinforcement signals) for our estimated answer

What Is Reinforcement Learning?


- Practically, we assume that the rule that maximizes the rewards is the underlying rule.
- Under this assumption, the rule is learned so that the rewards is maximized.
- Reinforcement learning can be regarded as being placed between supervised learning and unsupervised learning.

- Learning stand-up motion
- The robot consists of 3 links connected by 2 joints.
- Robot can control it's joint angles by itself.
- The goal is to learn the control rule for stand up.
- Control rule: mapping from inner states to control signal.

From IEICE Trans. Vol. J82-D-II, pp.2118-2131, 1999

- Essentially, reward is given when stand-up motion has been succeeded, otherwise reward is zero.
- However, this does not work well in practice.
- Continuous reward is preferred.
- For example, stand-up is equivalent to lifting the head, the reward is designed such that the higher the head is, the more the reward is.

Example

Before learning

Example

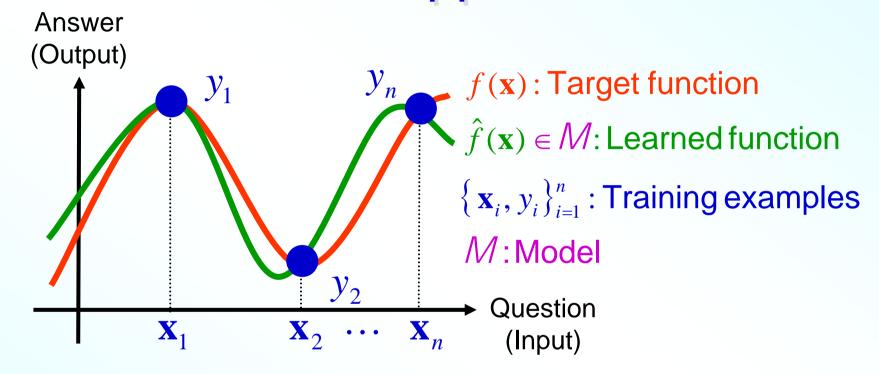
After 750 trials

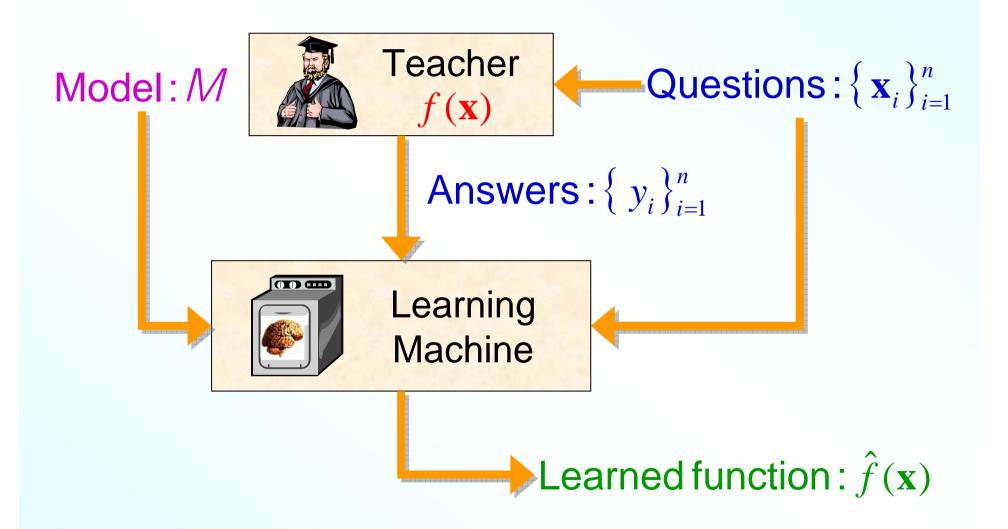
Example

After 920 trials

We Have Learned ...

- There are three issues in learning:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

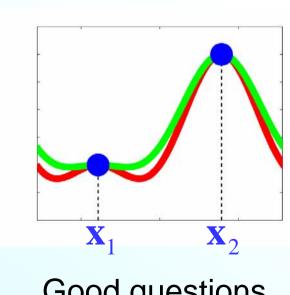




Supervised Learning As Function Approximation

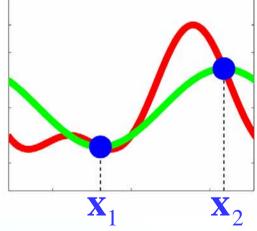
Using training examples $\{\mathbf{x}_i, y_i\}_{i=1}^n$, find a function $\hat{f}(\mathbf{x})$ from a model \mathcal{M} that well approximates the target function $f(\mathbf{x})$.

Diagram of Supervised Learning



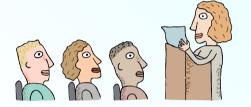
3 Important Topics in Supervised Learning


- Active learning:
 What are the best questions to ask?
- Model selection:
 What is the best model to use?
- Learning methods:
 What is the best way to learn?


Active Learning

For obtaining good learning results, questions should be determined appropriately.

Good questions

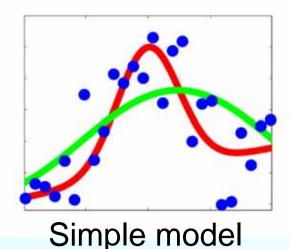


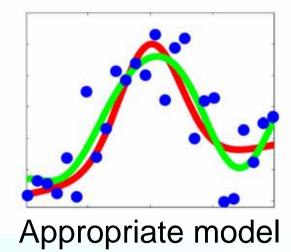
Bad questions

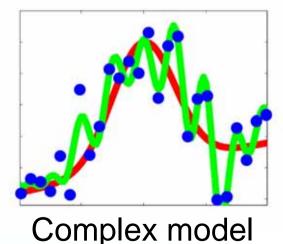
Active Learning: Analogy to Real Life

It is not interesting to passively attend the lecture.

It is more effective to actively ask questions in the lecture.

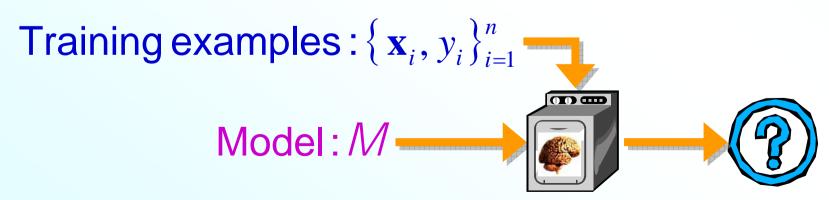



Model Selection


For obtaining good learning results, model should be determined appropriately.

Model is a set of function from which learning results are searched.

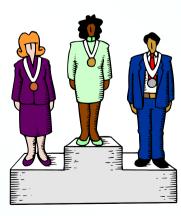
Target functionLearned function



Model Selection: Analogy to Real Life

- A model represents your ambition.
- You learn a fixed amount of material.
- If you are less ambitious, you are not capable of even memorizing what you have learned. Therefore, you can not find the truth.
- If you are too ambitious, you can memorize what you have learned perfectly. However, you can not get the whole picture.
- If you are appropriately ambitious, then you can understand the truth.

Learning Methods


- Now you have
 - A model, from which your learning result function is searched.
 - Training examples, which are pairs of questions and their answers.
- A learning method is a rule to specify a function in the model based on the training examples.

Learning Methods: Analogy to Real Life

- Now you have
 - Appropriate ambition for learning
 - Good questions and their answers
- What you should do is to just start studying!
- Effectively using your ambition and teaching materials is the key to success.

Conclusions

- There are 3 topics in learning research.
 - Understanding human brains
 - Developing learning machines
 - Mathematically clarifying mechanism of learning
- There are 3 types of learning.
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- Topics of supervised learning:
 - Active learning
 - Model selection
 - Learning methods

Homework

 Prepare your own supervised learning data sets (e.g., from your research domain)

$$\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$$

Input should x_i be vectors and output y_i should be scalars.

$$oldsymbol{x}_i \in \mathbb{R}^d$$

$$y_i \in \mathbb{R}$$

- Better if
 - Input is not so high dimensional
 - Many samples

$$d: \text{small}$$

n: large

Explain specification of your data

Homework (cont.)

- Prepare a computer environment in which you can run
 - e.g., MATLAB, octave, scilab, R...
- Deadline: beginning of next class (April 25th)