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Normalization of EigenvectorsNormalization of Eigenvectors

Eigenvectors                are orthogonal.

When the eigenproblem is solved by some 
software, eigenvectors would be normalized.

What about primal eigenvectors                ?
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Normalization of EigenvectorsNormalization of Eigenvectors

are orthogonal but not normalized!
Normalization:
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Kernel PCA ProjectionKernel PCA Projection

Kernel PCA projection of a feature 
vector                   :

Since  
we have
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Kernel PCA ProjectionKernel PCA Projection

If we embed given feature vectors
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ExampleExample

Wine data (UCI): 13-dim, 178 samples

PCA KPCA2

Linear PCA Gaussian KPCA
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Example (cont.)Example (cont.)

KPCA2
KPCA1

KPCA3

Choice of kernels (type and parameter) 
depends on the result.
Appropriately choosing kernels is not 
easy in practice.
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Pre-ImagesPre-Images

Pre-images: the embedded data pulled back 
in the original input space.
Obtaining pre-images is sometimes useful to 
interpret the result.
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Pre-Images (cont.)Pre-Images (cont.)

When an inverse mapping              exists, 
pre-images can be obtained.
Otherwise it is in principle impossible.
Idea: Find approximate pre-images:

Naïve idea:

What else?
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SuggestionSuggestion

If you are interested in the pre-image 
problem, the following article would be 
interesting.
J.T. Kwok and I.W. Tsang.
The pre-image problem in kernel methods.
IEEE Transactions on Neural Networks,
15(6):1517-1525, Nov 2004 
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Kernel Trick RevisitedKernel Trick Revisited

An inner product in the feature space can be 
efficiently calculated by the kernel function.
If a linear algorithm is expressed only in 
terms of the inner product, it can be non-
linearlized by the kernel trick:

Principal component analysis
Locality preserving projection
K-means clustering
Perceptron (support vector machine)
Fisher discriminant analysis 
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LPP in Feature SpaceLPP in Feature Space

: Feature vectors
Suppose 
Eigenproblem: 

(A) has    positive generalized eigenvalues:

Associated generalized eigenvectors:
Embedding of     :

(A)
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Dual Generalized EigenproblemDual Generalized Eigenproblem

(B) has    positive generalized eigenvalues:

Associated generalized eigenvectors:
Then eigenvectors              are given by

(B)
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ProofProof

is expressed by using some     and 
as

Then (A) is expressed as

Multiplying        to (C) from left-hand side, 
we have (B)

(C)
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Kernel LPPKernel LPP

Let              .
Embedding of     :



145Kernel LPP Embedding
for Given Features

Kernel LPP Embedding
for Given Features

Kernel LPP embedding for given features: 

Let 



146Kernel LPP Embedding
for Given Features (cont.)
Kernel LPP Embedding

for Given Features (cont.)
can be directly obtained as follows.

Since                     ,                                     
yields

Solution of                           is given by the 
following simpler eigenproblem.

Note: When similarity matrix      is sparse,      
and     are also sparse!
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Laplacian Eigenmap EmbeddingLaplacian Eigenmap Embedding

Definition of     implies

In practice, we remove          and use

This non-linear embedding method is 
called Laplacian eigenmap embedding.
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ExampleExample

Laplacian eigenmap can successfully 
unfold the non-linear manifold.

Original data (3D) Embedded Data (2D)



149Non-Linear Dimensionality 
Reduction Methods: Summary

Non-Linear Dimensionality 
Reduction Methods: Summary

How to choose kernels is 
not clearHighly FlexibleKernel

PCA
How to choose kernels is 

not clear
Local structure preservation in 

a non-linear fashion
Kernel
LPP

DisadvantagesAdvantagesMethod
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Methods: Summary

Dimensionality Reduction 
Methods: Summary

Kernel PCAPrincipal Component Analysis
(PCA)

Non-Gaussian Component 
Analysis (NGCA)

Projection Pursuit (PP)

Kernel LPP
(Laplacian Eigenmap)

Locality Preserving Projection
(LPP)

Non-LinearLinear
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HomeworkHomework

1. Data visualization: Embed your data 
sets into 2- or 3-dimensional 
subspace by kernel PCA or 
Laplacian eigenmap.

2. Data mining: Find something 
interesting from the visualized data.


