Normalization of Eigenvectors¹³⁰ $K\alpha = \lambda \alpha$ Eigenvectors $\{\alpha^{(i)}\}_{i=1}^{m}$ are orthogonal.

$$\langle \boldsymbol{\alpha}^{(i)}, \boldsymbol{\alpha}^{(j)} \rangle = 0 \text{ for } i \neq j$$

When the eigenproblem is solved by some software, eigenvectors would be normalized.

$$\|\boldsymbol{\alpha}^{(i)}\| = 1$$

What about primal eigenvectors $\{\psi^{(i)}\}_{i=1}^m$?

131 Normalization of Eigenvectors $\langle \psi^{(i)}, \psi^{(j)}
angle = \langle K lpha^{(i)}, lpha^{(j)}
angle$ $= 0 \text{ for } i \neq j \qquad \psi^{(i)} = \sum \alpha_j^{(i)} \boldsymbol{f}_j$ $\|\boldsymbol{\psi}^{(i)}\| = \sqrt{\lambda_i}$ i=1 $[\{ \psi^{(i)} \}_{i=1}^{m}]$ are orthogonal but not normalized! Normalization:

$$\boldsymbol{\psi}^{(i)} \longleftarrow \frac{\boldsymbol{\psi}^{(i)}}{\|\boldsymbol{\psi}^{(i)}\|} = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j^{(i)} \boldsymbol{f}_j$$

Kernel PCA Projection

132

Kernel PCA projection of a feature vector $f' = \phi(x')$:

 $g' = B_{KPCA} f' \quad B_{KPCA} = (\psi_1 | \psi_2 | \cdots | \psi_m)^\top$ Since $\langle f', \psi_i \rangle = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j^{(i)} K(x', x_j)$ we have $g' = \Lambda^{-1/2} A k'$

$$\boldsymbol{A} = (\boldsymbol{\alpha}^{(1)} | \boldsymbol{\alpha}^{(2)} | \cdots | \boldsymbol{\alpha}^{(m)})^{\top}$$

$$\boldsymbol{\Lambda} = \operatorname{diag} (\lambda_1, \lambda_2, \dots, \lambda_m)$$

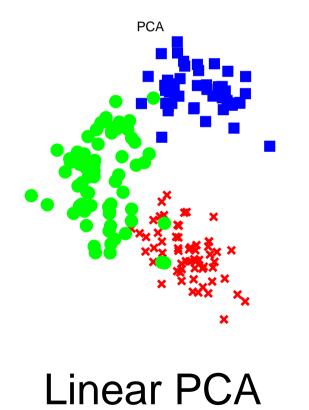
$$\boldsymbol{k}' = (K(\boldsymbol{x}', \boldsymbol{x}_1), K(\boldsymbol{x}', \boldsymbol{x}_2), \dots K(\boldsymbol{x}', \boldsymbol{x}_n))^{\top}$$

133 **Kernel PCA Projection** $\langle \boldsymbol{f}_i, \boldsymbol{\psi}_k \rangle = \frac{1}{\sqrt{\lambda_k}} \sum_{i=1}^n \alpha_j^{(k)} K(\boldsymbol{x}_i, \boldsymbol{x}_j)$ If we embed given feature vectors $\{f_i\}_{i=1}^n$ $\boldsymbol{G} = (\boldsymbol{g}_1 | \boldsymbol{g}_2 | \cdots | \boldsymbol{g}_n)$ $= \Lambda^{-1/2} A K$ $AK = \Lambda A$ $= \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}$

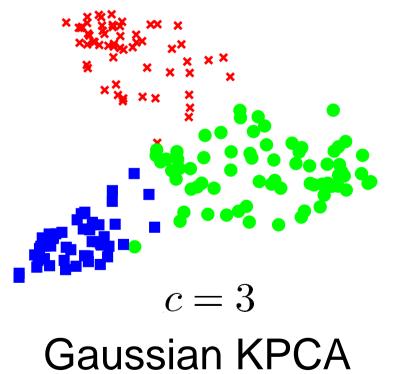
$$\boldsymbol{A} = (\boldsymbol{\alpha}^{(1)} | \boldsymbol{\alpha}^{(2)} | \cdots | \boldsymbol{\alpha}^{(m)})^{\top}$$
$$\boldsymbol{\Lambda} = \operatorname{diag} (\lambda_1, \lambda_2, \dots, \lambda_m)$$
$$\boldsymbol{K}_{i,j} = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

Wine data (UCI): 13-dim, 178 samples

 $K(x, x') = \exp(-||x - x'||^2/c^2)$

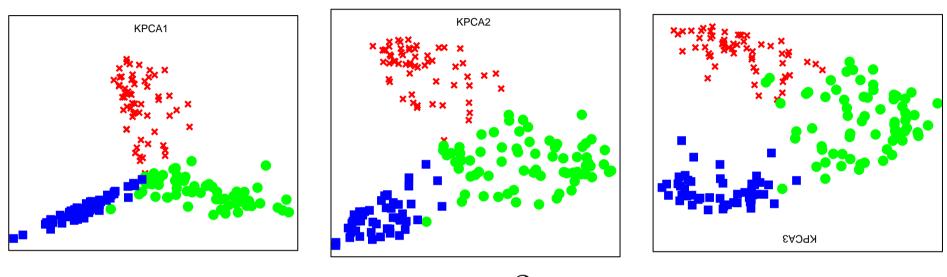


KPCA2



Example (cont.)

135



c=2 c=3 c=6

- Choice of kernels (type and parameter) depends on the result.
- Appropriately choosing kernels is not easy in practice.

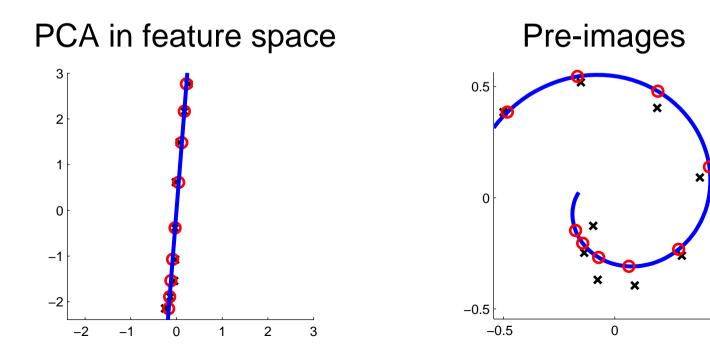
Pre-Images

136

0.5

Pre-images: the embedded data pulled back in the original input space.

Obtaining pre-images is sometimes useful to interpret the result.



Pre-Images (cont.)

- When an inverse mapping $\phi^{-1}(z)$ exists, pre-images can be obtained.
- Otherwise it is in principle impossible.
- Idea: Find approximate pre-images:

• Naïve idea:

$$\min_{x} \|\phi(x) - \phi(x_0)\|^2$$

• What else?

Suggestion

If you are interested in the pre-image problem, the following article would be interesting.

 J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. *IEEE Transactions on Neural Networks*, 15(6):1517-1525, Nov 2004

Kernel Trick Revisited $\langle \boldsymbol{f}_i, \boldsymbol{f}_j \rangle = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$

140

- An inner product in the feature space can be efficiently calculated by the kernel function.
- If a linear algorithm is expressed only in terms of the inner product, it can be nonlinearlized by the kernel trick:
 - Principal component analysis
 - Locality preserving projection
 - K-means clustering
 - Perceptron (support vector machine)
 - Fisher discriminant analysis

LPP in Feature Space

 $\{ f_i \mid f_i = \phi(x_i) \}_{i=1}^n : Feature vectors$

Suppose rank $(\mathbf{F}) = n$ $\mathbf{F} = (\mathbf{f}_1 | \mathbf{f}_2 | \cdots | \mathbf{f}_n)$ Eigenproblem:

$$\boldsymbol{F} \boldsymbol{L} \boldsymbol{F}^{\top} \boldsymbol{\psi} = \lambda' \boldsymbol{F} \boldsymbol{D} \boldsymbol{F}^{\top} \boldsymbol{\psi} \quad (\mathsf{A})$$

(A) has n positive generalized eigenvalues:

$$\lambda_1' \ge \lambda_2' \ge \dots \ge \lambda_n' > 0$$

Associated generalized eigenvectors: $\{\psi_i\}_{i=1}^n$ Embedding of x': $g' = B_{LPP}f'$

$$\boldsymbol{B}_{LPP} = (\boldsymbol{\psi}_{n-m+1} | \boldsymbol{\psi}_{n-m+2} | \cdots | \boldsymbol{\psi}_n)^{\top} \quad \boldsymbol{f}' = \phi(\boldsymbol{x}')$$

142 **Dual Generalized Eigenproblem** $KLK\alpha = \lambda KDK\alpha$ **(B)** $oldsymbol{K}_{i,j} = \langle oldsymbol{f}_i, oldsymbol{f}_j angle$ (B) has *n* positive generalized eigenvalues: $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0$ Associated generalized eigenvectors: $\{\alpha^{(i)}\}_{i=1}^{n}$

Then eigenvectors $\{\psi_i\}_{i=1}^n$ are given by

$$\boldsymbol{\psi}_i = \sum_{j=1}^n \alpha_j^{(i)} \boldsymbol{f}_j + \boldsymbol{f}^{\perp}$$

Proof

 ψ is expressed by using some α and $\langle \boldsymbol{f}^{\perp}, \boldsymbol{f}_i \rangle = 0$ for all *i* as $\boldsymbol{\psi} = \sum \alpha_j \boldsymbol{f}_j + \boldsymbol{f}^{\perp}$ j=1Then (A) is expressed as $FLK\alpha = \lambda FDK\alpha$ (C) • Multiplying \mathbf{F}^{\top} to (C) from left-hand side, we have (B)

Kernel LPP

$$\boldsymbol{\psi}_i = \sum_{j=1}^n \alpha_j^{(i)} \boldsymbol{f}_j + \boldsymbol{f}^{\perp}$$

• $K_{i,j} = K(x_i, x_j)$ • Let $f^{\perp} = 0$.

Embedding of x':

$$g' = A^ op k'$$

$$\boldsymbol{A} = (\boldsymbol{\alpha}^{(n-m+1)} | \boldsymbol{\alpha}^{(n-m+2)} | \cdots | \boldsymbol{\alpha}^{(n)})^{\top}$$
$$\boldsymbol{k}' = (K(\boldsymbol{x}', \boldsymbol{x}_1), K(\boldsymbol{x}', \boldsymbol{x}_2), \dots K(\boldsymbol{x}', \boldsymbol{x}_n))^{\top}$$

Kernel LPP Embedding for Given Features

145

Kernel LPP embedding for given features: $G = (g_1 | g_2 | \cdots | g_n)$ = AK

Let
$$G = (y^{(n-m+1)} | y^{(n-m+2)} | \cdots | y^{(n)})^{\top}$$

$$oldsymbol{y}^{(j)} = oldsymbol{K} oldsymbol{lpha}^{(j)}$$

Kernel LPP Embedding for Given Features (cont.)
y^(j) can be directly obtained as follows.
Since y^(j) = Kα^(j), KLKα = λKDKα yields KLy = λKDy

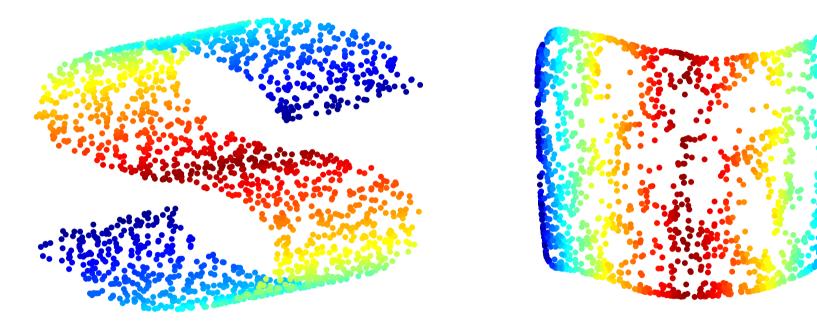
Solution of $KLy = \lambda KDy$ is given by the following simpler eigenproblem.

$$Ly = \lambda Dy$$

Note: When similarity matrix W is sparse, L and D are also sparse! Laplacian Eigenmap Embedding $\boldsymbol{D} = \operatorname{diag}(\sum_{i=1}^{n} \boldsymbol{W}_{i,j})$ $Ly = \lambda Dy$ L = D - WDefinition of L implies L1 = 0In practice, we remove $y^{(n)}$ and use $\boldsymbol{G} = (\boldsymbol{y}^{(n-m)} | \boldsymbol{y}^{(n-m+1)} | \cdots | \boldsymbol{y}^{(n-1)})^{\top}$

This non-linear embedding method is called Laplacian eigenmap embedding.

Original data (3D) Embedded Data (2D)



Laplacian eigenmap can successfully unfold the non-linear manifold.

Non-Linear Dimensionality ¹⁴⁹ Reduction Methods: Summary

Method	Advantages	Disadvantages
Kernel PCA	Highly Flexible	How to choose kernels is not clear
Kernel LPP	Local structure preservation in a non-linear fashion	How to choose kernels is not clear

Dimensionality Reduction ¹⁵⁰ Methods: Summary

Linear	Non-Linear
Principal Component Analysis (PCA)	Kernel PCA
Locality Preserving Projection (LPP)	Kernel LPP (Laplacian Eigenmap)
Projection Pursuit (PP)	
Non-Gaussian Component Analysis (NGCA)	

Homework

- Data visualization: Embed your data sets into 2- or 3-dimensional subspace by kernel PCA or Laplacian eigenmap.
- 2. Data mining: Find something interesting from the visualized data.