Non-Linearizing Linear Methods ${ }^{112}$

\square A simple non-linear extension of linear methods while keeping advantages of linear methods:

- Map the original data to a feature space by a non-linear transformation
- Run linear algorithm in the feature space

PCA in Feature Space

\square Non-linear transformation: $\phi: \boldsymbol{x} \rightarrow \boldsymbol{f}$
\square Feature vectors: $\left\{\boldsymbol{f}_{i} \mid \boldsymbol{f}_{i}=\phi\left(\boldsymbol{x}_{i}\right)\right\}_{i=1}^{n}$
\square Centered feature vectors:

$$
\boldsymbol{f}_{i} \longleftarrow \boldsymbol{f}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{f}_{j}
$$

Eigenproblem: $\boldsymbol{C}_{\boldsymbol{f}} \boldsymbol{\psi}=\lambda \boldsymbol{\psi}$

$$
\boldsymbol{C}_{\boldsymbol{f}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{f}_{i} \boldsymbol{f}_{i}^{\top}
$$

PCA Projection: $\boldsymbol{g}_{i}=\boldsymbol{B}_{P C A} \boldsymbol{f}_{i}$

$$
\boldsymbol{B}_{P C A}=\left(\boldsymbol{\psi}_{1}\left|\boldsymbol{\psi}_{2}\right| \cdots \mid \boldsymbol{\psi}_{m}\right)^{\top}
$$

Example

$\square d=2$

Linear PCA

Example (cont.)

$\boldsymbol{x}=(a, b)^{\top}$
$\square \phi(\boldsymbol{x})=(r, \theta)^{\top}$:Polar coordinate

$$
r \cos \theta=a \quad r \sin \theta=b
$$

Centered data in input space

Centered data
in feature space

Example (cont.)

■ Run PCA in feature space.

Example (cont.)

\square Pull the results back to input space.

- Non-linear PCA describes the original data much better than linear PCA.
118

PCA in High-Dimensional Feature Space

- If $\operatorname{dim}(\mathcal{H})$ is high, description ability of non-linear PCA would be better.
\square However, when $\operatorname{dim}(\mathcal{H})$ is very large, PCA in feature space is computationally demanding.
- We need a trick to reduce computational burden.

Dual Eigenproblem

$$
C_{\boldsymbol{f}} \psi=\lambda \psi
$$

Since $\quad \boldsymbol{C}_{\boldsymbol{f}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{f}_{i} \boldsymbol{f}_{i}^{\top}$,

$$
{ }^{\exists} \boldsymbol{\alpha}, \quad \boldsymbol{\psi}=\sum_{j=1}^{n} \alpha_{j} \boldsymbol{f}_{j}
$$

Eigenproblem is

$$
\frac{1}{n} \sum_{i, j=1}^{n} \alpha_{j}\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \boldsymbol{f}_{i}=\lambda \sum_{i=1}^{n} \alpha_{i} \boldsymbol{f}_{i}
$$

Dual Eigenproblem (cont.)

$$
\frac{1}{n} \sum_{i, j=1}^{n} \alpha_{j}\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \boldsymbol{f}_{i}=\lambda \sum_{i=1}^{n} \alpha_{i} \boldsymbol{f}_{i}
$$

\square In matrix form, $\quad \boldsymbol{F} \boldsymbol{K} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{F} \boldsymbol{\alpha}$

$$
\begin{gathered}
\boldsymbol{F} \equiv\left(\boldsymbol{f}_{1}\left|\boldsymbol{f}_{2}\right| \cdots \mid \boldsymbol{f}_{n}\right) \\
\boldsymbol{K}_{i, j} \equiv\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad \lambda^{\prime} \equiv n \lambda
\end{gathered}
$$

- Solution of the above eigenproblem is given by

$$
\boldsymbol{K} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}
$$

$$
\left(\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}\right) \quad\left(\left\langle\boldsymbol{\alpha}^{(i)}, \boldsymbol{\alpha}^{(j)}\right\rangle=\delta_{i, j}\right)
$$

Kernel Trick

$$
\boldsymbol{K} \boldsymbol{\alpha}=\lambda^{\prime} \boldsymbol{\alpha}
$$

- Given K, solving dual is faster than primal for $\operatorname{dim}(\mathcal{H})>n$.
- However, calculating K is still painful.

■"Kernel trick": For some transformation $\phi(\boldsymbol{x})$,

$$
\begin{aligned}
& { }^{\exists} K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \text { s.t. } K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \\
& \quad \boldsymbol{f}_{i}=\phi\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

$\square K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$:Kernel function

Kernels

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=\left\langle\phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right)\right\rangle
$$

\square Rather than directly defining $\phi(\boldsymbol{x})$, we implicitly specify $\phi(\boldsymbol{x})$ by $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$.
\square Kernel matrix: $\boldsymbol{K}_{i, j} \equiv K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
\square Implicit mapping $\phi(\boldsymbol{x})$ exists if $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is s.t.

- \boldsymbol{K} is symmetric: $\boldsymbol{K}^{\top}=\boldsymbol{K}$
- \boldsymbol{K} is positive semi-definite: $\forall \boldsymbol{y},\langle\boldsymbol{K} \boldsymbol{y}, \boldsymbol{y}\rangle \geq 0$
\square Such $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is often called the Mercer kernel or reproducing kernel.

Examples of Kernels

124

- Polynomial kernel:

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{c} \quad c \in \mathbb{N}
$$

- $d=2 \quad c=2$

$$
\begin{aligned}
\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{2} & =\left(s s^{\prime}+t t^{\prime}\right)^{2} \\
& =s s s^{\prime} s^{\prime}+2 s s^{\prime} t t^{\prime}+t t t^{\prime} t^{\prime}
\end{aligned}
$$

$$
\boldsymbol{x}=(s, t)^{\top}
$$

$$
\longmapsto \boldsymbol{f}=\phi(\boldsymbol{x})=\left(s^{2}, \sqrt{2} s t, t^{2}\right)^{\top}
$$

$$
\operatorname{dim}(\mathcal{H})=3
$$

- In general,

$$
\operatorname{dim}(\mathcal{H})=\binom{c+d-1}{c}
$$

Examples of Kernels (cont.) ${ }^{125}$

Gaussian kernel:

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / c\right) \quad c>0
$$

$$
\operatorname{dim}(\mathcal{H})=\infty
$$

Playing with Kernel Trick
 126

$$
\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

\square Exercise: Prove the following
$\bullet\left\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\right\|^{2}=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)$
$\bullet \cos \theta=\frac{K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)}{\sqrt{K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right) K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)}}$

- For Gaussian kernel
- $\left\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\right\|^{2}=2-2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

- $\cos \theta=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

Centering in Feature Space ${ }^{127}$

For implicit feature map, how do we center $\left\{\boldsymbol{f}_{i}\right\}_{i=1}^{n}$?

$$
\boldsymbol{f}_{i} \longleftarrow \boldsymbol{f}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{f}_{j}
$$

\square We only need centered kernel matrix.

- Centered kernel matrix is given by

$$
\begin{array}{r}
\boldsymbol{K} K-\boldsymbol{N} K-K N+N K N \\
\boldsymbol{N}_{i, j}=1 / n
\end{array}
$$

Homework

- Prove that the centered kernel matrix is given by

$$
\begin{array}{r}
\boldsymbol{K} \longleftarrow \boldsymbol{K}-\boldsymbol{N} \boldsymbol{K}-\boldsymbol{K} \boldsymbol{N}+\boldsymbol{N} \boldsymbol{K} \boldsymbol{N} \\
\boldsymbol{N}_{i, j}=1 / n
\end{array}
$$

