Constructing v Satisfying (A) .
/ww(w)p(w)dw =0 (A)

h(x) : Smooth non-linear function from
RY to R

Then following v (x) satisfies (A):

b(x) =" / sh(@)p(x)dz — h(x)



Constructing 8 from h %

Then 3 Is given by

Empirical approximation:
~ 1
B(h) = " Zg(wz)
=1

Note: B(h) only approximately belongs
to the non-Gaussian space.



ldentifying Non-Gaussian

Subspace

Each function i(z) yields a vector B(h)

Prepare a set of different non-linear
functions: {hi(x)};_;
Calculate corresponding vectors: {3;};_;

~ 1 —
B = ﬁzgz(%)
j=1

gi(x) = xh;(x) — Vh;(x)



ldentifying Non-Gaussian ~ >°

Subspace (cont.)

All {8;}"_, approximately belong to the
non-Gaussian subspace.

The non-Gaussian subspace may be
estimated by “principal subspace”

of {B;}i—:.

We apply PCA to {Bi}f:1 and extract
leading m directions.



Examples of Non-Linear Functions

For a random vector w |,

o h(x) =sin({w, x))

o h(x) = cos({w,x))

o h(z) = (w, x)” exp(—(w,z)*)

o h(x) = tanh({(w, x))
Corresponding derivatives are

o Vh(x) = wcos({w, x))

e Vh(x) = —wsin({w, x))

e Vh(x) = 3w(w, z)? exp(—(w, x)?)

—2w(w, x)* exp(—(w, z)?)
e Vhi(x) = w(l — tanh({(w, x)))
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Norm of E

Bi= =3 0(@) (@)= ohi(x) - Vhi(a)

Derivative Is a linear operation.

Mapping h — 3 is therefore linear.

Norm of 3 can be arbitrary by rescaling ~ .
For example, h(x) and 2h(x) give the
same direction but length Is different.

o— g R(T ")




. . o8
Normalization

In PCA, long vectors are more “powerful”
than short ones.

In order to have better estimaterf the non-
Gaussian subspace by PCA, {3;};—;
should be reasonably normalized.

Normalization should be carried out such
that accurate 3, has large norm.

B
b\‘ T
R(TT)




Normalization (cont.) %

his may be achieved by normalizing
{B;}i=1 such that the standard deviation
VEi is equivalent for all {8;};—1 .

&i = ]E{a:z}?zl H/Bz _ E{mz}?zlﬁzu

3
Eiel 1 B

-
B4 0> Eg R{T)

B

However, €: IS Inaccessible.



Empirical Approximation +

Variance Is expressed as

1 1
i = —Ezlgi(x)]|” — = ||Ezg:(x)]”
ei = —Ballgi(@)]” — —|Ezg:(@)]]

Empirical approximation:

1 & 1.1
gi=— ) llgi@)? = == > gi(z))I
n O T njzl




Algorithm of Non-Gaussian ***

Component Analysis

Prepare P different non-linear functions:
{hi(x) i

Calculate g, = %Zgi(wg’)
=1 g;(x) = xh;(x) — Vh;(x)

Normalize {83;},—; : 3; +— /37;/\/5'
. 1 < , 1,1 9
E; = E;H%(%)H — 5”5;9@(5’33)”

Apply PCA to {3,;}’_, and extract
leading m components.
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Examples (cont.)
= 100

i(x) = sin((w;, x))

Bz}f_l




Examples (cont.) o

With outliers, NGCA with sin works well.
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Homework

r=s+€ s~q(s) €~ por(e)
P : Projection onto T'™'S
T : mxd matrixsuchthat P=T"'"T
m = dim(T'~'S)
Prove p(x) = f(Tx)por(x)

f(z)=g(T"2)

g(w):/Q(s)e 3 (T 8.8) (L7 s.2) g g



Homework (cont.) H

Prove ;= Ezyn [18; — Ewye Bil* s
expressed as

1

1
i = el ? — —||Ezg: ?
ei = —Ballgi(@)]” — ~||Ezg:(@)]]
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Linear Dimensionality Reductiof?”
Methods: Summary

Method Advantages Disadvantages

Good data description
PCA Analytic solution available Structure can be missed
No tuning parameter

Local structure preservation _ .
LPP _ _ _ Tuning parameters included
Analytic solution available

No analytic solution

PP Interesting structure discovery .
NG measure prefixed

NGCA | Interesting structure discovery No analytic solution




Data with Curved Structures 0

0.6
047

0.27

-0.2}
— L X
04 X2

-0.6¢

-0.8

If the data cloud Is bent, any linear
methods fail to find the curved structure.

mm)> Limitation of linear method!



Suggestion HO

Read the following article for the
next class:

B. Scholkopf, A. Smola and K.-R.
Muller: Nonlinear Component
Analysis as a Kernel Eigenvalue
Problem, Neural Computation, 10(5),
1299-1319, 1998.



