Correlation

\square Correlation coefficient for $\left\{s_{i}, t_{i}\right\}_{i=1}^{n}$:

$$
\rho=\frac{\sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)\left(t_{i}-\bar{t}\right)}{\sqrt{\left(\sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{2}\right)\left(\sum_{i=1}^{n}\left(t_{i}-\bar{t}\right)^{2}\right)}}
$$

Correlation

Redundancy

\square We observe the following onedimensional signal.

■ If two devices observe exactly the same signal, data has (maximum) positive correlation: $\rho=1$

Observed signal is redundant

High-Dimensional Data

- However, in practical data with highdimension, attributes are often redundant and correlated.

■urthermore, they are often degraded by noise.

Noise Reduction

- We want to reduce the influence of noise and extract cleaner signals.
\square This can be achieved by projecting out noisy directions without signals.

Noise Reduction (cont.)

- Suppose
- Signals are non-Gaussian
- Noises are Gaussian

■ Under this assumption, noise can be reduced by projecting out directions without non-Gaussian components.
■ Projection pursuit may be used for this purpose.

Non-Gaussianity Measures

78
\square PP needs to pre-specify non-Gaussianity measure.

- It is known that
- Some NG measures (e.g., log-cosh) are suitable for finding super-Gaussian components.
- Others (e.g., kurtosis) are suitable for finding sub-Gaussian components.
\square Here, we give another approach to finding non-Gaussian components.

Data Density

- Observation

= Redundant non-Gaussian signal + Gaussian noise

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{s}+\boldsymbol{\epsilon} \\
\boldsymbol{s} \sim q(\boldsymbol{s}) \quad \boldsymbol{\epsilon} \sim \phi_{\boldsymbol{\theta}, \boldsymbol{\Gamma}}(\boldsymbol{\epsilon})
\end{gathered}
$$

\square Density function $p(\boldsymbol{x})$ is given by the convolution of two density functions:

$$
p(\boldsymbol{x})=\int q(\boldsymbol{s}) \phi_{\boldsymbol{\theta}, \boldsymbol{\Gamma}}(\boldsymbol{x}-\boldsymbol{s}) d \boldsymbol{s}
$$

Data Density (cont.)

$$
p(\boldsymbol{x})=\int q(\boldsymbol{s}) \phi_{\boldsymbol{\theta}+\boldsymbol{s}, \Gamma}(\boldsymbol{x}) d \boldsymbol{s}
$$

- Intuition: "Sum of many Gaussians"

$$
\boldsymbol{x}=\boldsymbol{s}+\boldsymbol{\epsilon}
$$

Data Density (cont.)

Since s is redundant, $q(s)>0$ only in some subspace \mathcal{S}.

$$
p(\boldsymbol{x})=\int_{\boldsymbol{s} \in \mathcal{S}} q(\boldsymbol{s}) \phi_{\boldsymbol{\theta}, \boldsymbol{\Gamma}}(\boldsymbol{x}-\boldsymbol{s}) d \boldsymbol{s}
$$

Data Density (cont.)

- Suppose that Gaussian noise is mean zero and covariance identity:

$$
\phi(\boldsymbol{\epsilon})=(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2}\|\boldsymbol{\epsilon}\|^{2}}
$$

- Then $p(\boldsymbol{x})$ is expressed as

$$
\begin{gathered}
p(\boldsymbol{x})=g(\boldsymbol{x}) \phi(\boldsymbol{x}) \\
g(\boldsymbol{x})=\int_{\boldsymbol{s} \in \mathcal{S}} q(\boldsymbol{s}) e^{-\frac{1}{2}\|\boldsymbol{s}\|^{2}} e^{\langle\boldsymbol{s}, \boldsymbol{x}\rangle} d \boldsymbol{s}
\end{gathered}
$$

Data Density (cont.)

$$
g(\boldsymbol{x})=\int_{\boldsymbol{s} \in \mathcal{S}} q(\boldsymbol{s}) e^{-\frac{1}{2}\|\boldsymbol{s}\|^{2}} e^{\langle\boldsymbol{s}, \boldsymbol{x}\rangle} d \boldsymbol{s}
$$

$\square \boldsymbol{P}$:Projection onto \mathcal{S}
$\square \boldsymbol{P}$ is expressed using a $m \times d$ matrix \boldsymbol{T} as

$$
\boldsymbol{P}=\boldsymbol{T}^{\top} \boldsymbol{T}
$$

$$
m=\operatorname{dim}(\mathcal{S})
$$

\square For $s \in \mathcal{S}$,

$$
\begin{gathered}
\langle\boldsymbol{s}, \boldsymbol{x}\rangle=\langle\boldsymbol{P} \boldsymbol{s}, \boldsymbol{x}\rangle=\left\langle\boldsymbol{T}^{\top} \boldsymbol{T} \boldsymbol{s}, \boldsymbol{x}\right\rangle=\left\langle\boldsymbol{s}, \boldsymbol{T}^{\top} \boldsymbol{T} \boldsymbol{x}\right\rangle \\
\longmapsto p(\boldsymbol{x})=f(\boldsymbol{T} \boldsymbol{x}) \phi(\boldsymbol{x}) \\
f(\boldsymbol{z})=g\left(\boldsymbol{T}^{\top} \boldsymbol{z}\right)
\end{gathered}
$$

Non-Gaussian Subspace

■ Orthogonal decomposition:

$$
x=\widetilde{\boldsymbol{x}}+\widetilde{\boldsymbol{x}}^{\perp}
$$

$\square \widetilde{\boldsymbol{x}} \in \mathcal{R}\left(\boldsymbol{T}^{\boldsymbol{\top}}\right)$

$$
\widetilde{\boldsymbol{x}}^{\perp} \in \mathcal{R}\left(\boldsymbol{T}^{\top}\right)^{\perp}=\mathcal{N}(\boldsymbol{T})
$$

$$
\begin{aligned}
\widetilde{\boldsymbol{x}} & =\boldsymbol{P} \boldsymbol{x} \\
\widetilde{\boldsymbol{x}}^{\perp} & =\boldsymbol{x}-\widetilde{\boldsymbol{x}} \\
P & =\boldsymbol{T}^{\top} \boldsymbol{T}
\end{aligned}
$$

Non-Gaussian Subspace (cont.) ${ }^{85}$

$$
\begin{aligned}
p(\boldsymbol{x}) & =f\left(\boldsymbol{T}\left(\widetilde{\boldsymbol{x}}+\widetilde{\boldsymbol{x}}^{\perp}\right)\right) \phi\left(\widetilde{\boldsymbol{x}}+\widetilde{\boldsymbol{x}}^{\perp}\right) & \widetilde{\boldsymbol{x}} & \in \mathcal{R}\left(\boldsymbol{T}^{\top}\right) \\
& =f(\boldsymbol{T} \widetilde{\boldsymbol{x}}) \phi(\widetilde{\boldsymbol{x}}) \phi\left(\widetilde{\boldsymbol{x}}^{\perp}\right) & \widetilde{\boldsymbol{x}}^{\perp} & \in \mathcal{N}(\boldsymbol{T})
\end{aligned}
$$

\square Given $\widetilde{\boldsymbol{x}}, \widetilde{\boldsymbol{x}}^{\perp}$ is conditionally Gaussian so it does not contain non-Gaussian components.
$\square \mathcal{R}\left(\boldsymbol{T}^{\top}\right)$:Non-Gaussian subspace

- We want to identify $\mathcal{R}\left(\boldsymbol{T}^{\top}\right)$

General Framework

- Suppose $p(\boldsymbol{x})$ is expressed as

$$
p(\boldsymbol{x})=f(\boldsymbol{T} \boldsymbol{x}) \phi_{\boldsymbol{\theta}, \boldsymbol{\Gamma}}(\boldsymbol{x})
$$

- \boldsymbol{T} : Unknown linear mapping $\mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$
- f : Unknown function on \mathbb{R}^{m}
- $\boldsymbol{\theta}, \boldsymbol{\Gamma}$: Unknown mean and covariance matrix
\square We want to identify the non-Gaussian subspace $\mathcal{R}\left(\boldsymbol{T}^{\top}\right)$, without estimating

$$
T, f, \boldsymbol{\theta}, \Gamma
$$

- For simplicity, we assume

$$
\int \boldsymbol{x} p(\boldsymbol{x})=0, \quad \int \boldsymbol{x} \boldsymbol{x}^{\top} p(\boldsymbol{x})=\boldsymbol{I}_{d}, \quad \boldsymbol{\theta}=\mathbf{0}
$$

Key Theorem

$\square \psi(\boldsymbol{x})$: Smooth function from \mathbb{R}^{d} to \mathbb{R} which fulfills

$$
\begin{equation*}
\int \boldsymbol{x} \psi(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbf{0} \tag{A}
\end{equation*}
$$

- Then the vector β defined by

$$
\boldsymbol{\beta}(\psi)=\int \nabla \psi(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}
$$

belongs to the non-Gaussian space $\mathcal{R}\left(\boldsymbol{T}^{\top}\right)$:

$$
\boldsymbol{\beta}(\psi) \in \mathcal{R}\left(\boldsymbol{T}^{\top}\right)
$$

Proof

$$
\int \psi(\boldsymbol{x}+\boldsymbol{u}) p(\boldsymbol{x}) d \boldsymbol{x}=\int \psi(\boldsymbol{x}) p(\boldsymbol{x}-\boldsymbol{u}) d \boldsymbol{x}
$$

Differentiating this with respect to u gives

$$
\int \nabla \psi(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=-\int \psi(\boldsymbol{x}) \nabla p(\boldsymbol{x}) d \boldsymbol{x}
$$

Since $\nabla \log p(\boldsymbol{x})=\frac{\nabla p(\boldsymbol{x})}{p(\boldsymbol{x})}$,

$$
\boldsymbol{\beta}(\psi)=-\int \psi(\boldsymbol{x}) \nabla \log p(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}
$$

$$
\begin{gathered}
\text { Proof (cont.) } \\
p(\boldsymbol{x})=f(\boldsymbol{T} \boldsymbol{x}) \phi_{\boldsymbol{\theta}, \boldsymbol{\Gamma}}(\boldsymbol{x})
\end{gathered}
$$

$\nabla \log p(\boldsymbol{x})=\nabla \log f(\boldsymbol{T} \boldsymbol{x})+\nabla \log \phi_{\mathbf{0}, \boldsymbol{\Gamma}}(\boldsymbol{x})$

$$
=\frac{\boldsymbol{T}^{\top} \nabla f(\boldsymbol{T} \boldsymbol{x})}{f(\boldsymbol{T} \boldsymbol{x})}-\boldsymbol{\Gamma}^{-1} \boldsymbol{x}
$$

\square This yields

$$
\left.\begin{array}{rl}
\boldsymbol{\beta}(\psi)= & -\boldsymbol{T}^{\top} \int \nabla f(\boldsymbol{T} \boldsymbol{x}) \psi(\boldsymbol{x}) \phi_{\mathbf{0}, \boldsymbol{\Gamma}}(\boldsymbol{x}) d \boldsymbol{x}
\end{array}\right) \in \mathcal{R}\left(\boldsymbol{T}^{\top}\right) .
$$

Homework

\square Intermediate evaluation of this course:

- Write your opinion about this course, e.g., contents, relevance, level, homework, explanation clarity, lecturer...
- What did you like/dislike so far?
- I want to make this course interesting and useful for all of you!
- Do this homework seriously to improve the latter half of the course.

