Correlation

Correlation coefficient for {s;,t;}r_q1 :

D ieq (80 —8)(ti — 1)

p _
VS (s = 9)2) (S0 (i — )2)

12
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Correlation

Negatively correlated

Uncorrelated

Positively correlated




Redundancy “

We observe the following one-
dimensional signal.

If two devices observe exactly the
same signal, data has (maximum)
positive correlation: p=1

Observed signal
IS redundant

|
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/ p=1
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High-Dimensional Data ®

However, In practical data with high-
dimension, attributes are often redundant
and correlated.

Furthermore, they are often degraded by
noise.
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Noise Reduction "

We want to reduce the influence of noise
and extract cleaner signals.

This can be achieved by projecting out
noisy directions without signals.

| | | |
o o b N o N A O 0




Noise Reduction (cont.)

Suppose
e Signhals are non-Gaussian
e Noises are Gaussian

Under this assumption, noise can be
reduced by projecting out directions
without non-Gaussian components.

Projection pursuit may be used for this
purpose.

(&4
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Non-Gaussianity Measures

PP needs to pre-specify non-Gaussianity

measure.
It IS known that

e Some NG measures (e.d., log-cosh) are suitable
for finding super-Gaussian components.

e Others (e.g., kurtosis) are suitable for finding

sub-Gaussian com

Here, we give anot
non-Gaussian com

ponents.

ner approach to finding
ponents.




Data Density 79

Observation
= Redundant non-Gaussian signal
+ Gaussian noise

Tr =8+ €
s~q(s) €~ ¢gr(€)

Density function p(x) is given by the
convolution of two density functions:

p(@) = / 1(8)bo.r(x — 8)ds
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Data Density (cont.) >

p(@) = [ als)d0:er(@)ds
Intuition: “Sum of many Gaussians”

r=8-+€

| | | |
o o BN N O N b o (00]
| | | l
o o BN N O N b ()] 0o




Data Density (cont.)

Since s is redundant, ¢(s) > 0 only in
some subspace S .

p(@) = / _al)do (@ s)ds

S

31



Data Density (cont.)

Suppose that Gaussian noise iIs mean
zero and covariance identity:

Then p(x) is expressed as

p(x) = g(x)o(x)

g(w):/ J(s)e~ sl c(5:2) g
seS

82



Data Density (cont.) >

g(a’j) — / Q(S)G_%||S||2€<S’w>ds
seS

P :Projection onto S

P is expressed usinga m x d matrix T' as

L T
P=1T m = dim(S)
Forse S,

(s,x) = (Ps,x) = <TTTS z) = (s, T' Tx)

=) () ) ()

f(z)=g(T"z)
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Non-Gaussian Subspace

Orthogonal decomposition:

— T4zt z =Pz
x € R(TT) T mrox
e R(TT)L = N(T) =T'T
mJ_ ___________________________
4 /'
PN
‘ (r")



Non-Gaussian Subspace (c:ont.)85

p@) = [TE+ENOE+E) o ooy
= f(TZ)p(Z)p(T™) - € N(T)

o~

Given Z, Zis conditionally
Gaussian so It does not
contain non-Gaussian
components.

R(T ") :Non-Gaussian
subspace
We want to identify R(T' ")

| | | |
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General Framework

Suppose p(x) is expressed as
p(x) = f(Tx)pe r(x)
e T': Unknown linear mapping R? — R™

e f : Unknown function on R™
e O0.I' : Unknown mean and covariance matrix

We want to identify the non-Gaussian
subspace R(T'") , without estimating

T) f) 07 F
For simplicity, we assume

/mp(m) =0, /wap(m) =14, =0



Key Theorem >

Y (x): Smooth function from R to R which
fulfills

/ zp(x)p(x)de =0 (A)
Then the vector G defined by

Bv) = [ Vi@hp(e)de
belongs to the non-Gaussian space R(T") :

B(y) e R(T ")



Proof

/ (T +u)p dm—/w

Differentiating this with respect to u gives

| Vi@@dz = - [ vi@)V)ia

Vp(x)
p(x)

_ / (@) V log p(a)p(x)dz

Since Vlogp(x) =

88



Proof (cont.) >

p(x) = f(T'x)por(x)

Vlogp(xz) = Vlog f(Tx) + Vlog ¢o,r(z)
. T'Vf(Tx)
- f(Tz)
This yields

B(y) = —TT / Y (Tz)i(x)do.r(x)de € R(TT)
- / 2 (2)p(a) daz 0

| R




Homework

Intermediate evaluation of this course:

e Write your opinion about this course, e.g.,
contents, relevance, level, homework,
explanation clarity, lecturer...

e \What did you like/dislike so far?

| want to make this course interesting
and useful for all of you!

Do this homework seriously to improve
the latter half of the course.
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