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Correlation coefficient for  : 

CorrelationCorrelation
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CorrelationCorrelation
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RedundancyRedundancy

We observe the following one-
dimensional signal.

If two devices observe exactly the 
same signal, data has (maximum) 
positive correlation:

Observed signal
is redundant
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High-Dimensional DataHigh-Dimensional Data

However, in practical data with high-
dimension, attributes are often redundant 
and correlated.
Furthermore, they are often degraded by 
noise.
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Noise ReductionNoise Reduction

We want to reduce the influence of noise 
and extract cleaner signals.
This can be achieved by projecting out 
noisy directions without signals.
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Noise Reduction (cont.)Noise Reduction (cont.)

Suppose
Signals are non-Gaussian
Noises are Gaussian

Under this assumption, noise can be 
reduced by projecting out directions 
without non-Gaussian components.
Projection pursuit may be used for this 
purpose.
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Non-Gaussianity MeasuresNon-Gaussianity Measures

PP needs to pre-specify non-Gaussianity
measure.
It is known that 

Some NG measures (e.g., log-cosh) are suitable 
for finding super-Gaussian components. 
Others (e.g., kurtosis) are suitable for finding 
sub-Gaussian components. 

Here, we give another approach to finding 
non-Gaussian components.
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Data DensityData Density

Observation
= Redundant non-Gaussian signal

+ Gaussian noise

Density function         is given by the 
convolution of two density functions:



80
Data Density (cont.)Data Density (cont.)

Intuition: “Sum of many Gaussians”
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Data Density (cont.)Data Density (cont.)

Since    is redundant,               only in 
some subspace    .
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Data Density (cont.)Data Density (cont.)

Suppose that Gaussian noise is mean 
zero and covariance identity:

Then         is expressed as
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Data Density (cont.)Data Density (cont.)

:Projection onto
is expressed using a             matrix      as

For          , 
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Non-Gaussian SubspaceNon-Gaussian Subspace

Orthogonal decomposition: 
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Non-Gaussian Subspace (cont.)Non-Gaussian Subspace (cont.)

Given    ,       is conditionally 
Gaussian so it does not 
contain non-Gaussian 
components.

:Non-Gaussian 
subspace
We want to identify            −5 0 5
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General FrameworkGeneral Framework

Suppose         is expressed as

: Unknown linear mapping
: Unknown function on

: Unknown mean and covariance matrix
We want to identify the non-Gaussian 
subspace , without estimating

For simplicity, we assume
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Key TheoremKey Theorem

: Smooth function from      to     which 
fulfills 

Then the vector     defined by

belongs to the non-Gaussian space             : 

(A)
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ProofProof

Differentiating this with respect to     gives

Since                                ,
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Proof (cont.)Proof (cont.)

This yields 
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HomeworkHomework

Intermediate evaluation of this course:
Write your opinion about this course, e.g., 
contents, relevance, level, homework, 
explanation clarity, lecturer…
What did you like/dislike so far?

I want to make this course interesting 
and useful for all of you!
Do this homework seriously to improve 
the latter half of the course.


