Drawbacks of Gradient I\/Iethod51

Choice of ¢ affects speed of convergence.
e If £ Is small: Slow convergence

e If £ IS large: Fast but less accurate
Appropriately choosing ¢ Is not easy In
practice.

Demonstrations:

e demo(1): appropriate €

e demo(2): small ¢

e demo(3): large ¢
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Alternative Formulation

2
1 n
Y = argmax ( Z<b, ;)" — 3> subject to ||b|| =1

i\n
bL{y, "] i=1

Y is given by %00 OF s,

n

1
Yomae = argmax — Y (b,x;)* subject to ||b]|* = 1

in
bLl{y;}r " =1

n

1
Yoin = argmin_ — Z(b, z;)* subject to ||b]|* =1

in
bl{y,}r= " =1



Lagrangian >3

For the moment, ignore b1 {vy, }i=' .

In either minimization or maximization case,
Lagrangian Is given by

LbA) = =3 ()t + A2 - 1)

n -
1—=1

Stationary point (necessary condition):

OL 4 ; B
= E;%(b,m,&) +2Xb =0
We want to find & which satisfies

0L
f(b):%:()



54

Newton Method (1-Dim. )
Find b s.t. f(b) =

: Tangentﬁne

ffﬁyTangentHne

Sy




Newton Method (Multi-Dim.) >

Find b s.t. f(b)=0
1

bi+1 <— bi — (% ) f(bx)

b=b,,

Note:
e f(b) is ad -dimensional vector.

° % Is a d -dimensional matrix.



Newton Approach >0

f(b) =0 subject to ||b]|* =1 and bL{s,} i
Repeat the following until convergence:

e Update b by Newton method to satisfy the

stationary point condition oL _y-

3]0 1 ob
b —b— (%) f(b)

e Modify b to satisfy b1 {ap,} =
k—1
be—b—23 (b)),
=1

e Modify b to satisfy ||b|| = 1 :
b «— b/[|bl|



Newton Approach (cont.) >

f(b) = % f: z; (b, ;) + 2)\b

1=1
of 12 i T 2
— = — Y mx;x, (b,x;)” +2)\I 4
ob n
However,

e Calculating inverse (%>_ In each step Is

computationally demanding.
e )\ is unknown.



Approximation >

—me (b, ;) N< me)(i(b,mi>2>—Id

=1

EZ:UZ:UZT =1,
Then bl =1
12 —
% = = ZwiwiT(b, x;)? + 2\
Tl

1=1

~ (12 +2)\) 1,
Calculating inverse Is easy!



Approximation (cont.) >0

f(b) = % > xib,x;)” + 27b % ~ (12 +2)\) I
1=1
Approximate updating rule Is

1 4 —
12b — = (b, x;)°
12+2)\< n2w< ’w>>

1=1

b I1s normalized so we can ignore constant:

1n
b<— 3b— — (b, xz;)?
ngm z;)

A can be removed!
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Examples

Demonstrations:
e demo(1): Gradient ascent with appropriate ¢
e demo(4): Approximate Newton

Approximate Newton
e IS much faster than gradient ascent.
e does not include any tuning parameter!
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Outliers

Outliers: Irregular large values

If a Gaussian component contains outliers,
Its non-Gaussianity becomes very large
since kurtosis contains 4th power.

1 7
5 ;a)v mi>4

151

0.5

-0.5¢ 4
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Examples

Demonstrations:

e demo(4): Approximate Newton
(without outlier)

e demo(5): Approximate Newton
(with single outlier)

A single outlier can totally corrupt the resuilt.
Influence of outliers should be deemphasized!



. 64
General Non-Gaussian Measures

For some function G(s), we define a
general non-Gaussian measure by

> G

G(s) = s* corresponds to Kurtosis.

To suppress the effect of outliers, using a
“gentler” function would be appropriate.
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General Non-Gaussian Measures

Examples of smooth functions:

e GG(s) = log cosh(s)
o G(5) = — exp(—52/2)

\/

2:
15¢

1t
0.5}

ot

" logcosh(s)

Y —exp(—s”/2)




Approximate Newton Procedure’”

Approximate Newton procedure for centered
and sphered data:

e Update b to satisfy the stationary-point condition:
1. < 1"
b b3 o/ (b)) = - > wig(bi))
1=1 i=1 /
e Modify b to satisfy bl{yp il 9(s) = G'(s)

b+—b— Z

e Modify b to satlsfy 1b|| =1:
b «— b/||b]]



Derivatives

Derivatives:

° (84)/ _ 483
( 3)/ _ 1282

e (logcosh(s))" = tanh(s)
(tanh(s))’ = 1 — tanh®(s)

exp(—s”/2))" = sexp(—s/2)

(=
(se

sexp(—s°/2)) = (1 — s7) exp(—

s*/2)

6/



Examples

Demonstrations:
e demo(5): Approximate Newton with Kurtosis
g(s) = 4s°
e demo(6): Approximate Newton with log(cosh)
g(s) = tanh(s)

Approximate Newton with log(cosh) is
robust against outliers!
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Homework

Prove that approximate Newton updating
rule is given by

1. <~ 1 —
b ~bY_g((bx:) -~ > wig((b,z:))
1=1 1=1
under the following approximation:

—me ((b, x;)) z%ig’((b,@;)ﬂd
i=1




Homework (cont.) ®

Implement projection pursuit algorithms.

Apply the algorithms to your data set
and extract two non-Gaussian directions
IN your data.

Project your data onto the two-
dimensional subspace and find
something interesting (data mining!).



