Effect of Data Rescaling >

Rescaling of the data affects the results
of LPP and PCA, because Euclidean
distance depends on the scale of data.

n
Bpca = argmin Z |B' Bx; — x;||?
BcRmXd

Li=1 _
subject to BB' =1,,

n
BLPP — argmin Z HBCUZ — BwJHQWZ,j 9
BeRde

2,J=1

subject to BXDX 'B' =1,
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Invariance under Data Rescaling

To be Iinvariant under data rescaling,
embedding criterion should not depend
on the scale of the data.

ldea: Use data distributions, rather than
distances.

Suppose data samples are I.i.d. random
variables.

x; "~ p(x)



Gaussian Distribution >

Gaussian distribution: Probabillity
density function is given by

1

1 Tp—L(p_
Po.r(T) = (27r)%|I‘|% CeXp (‘5(513—9) | N 9))

6.I" :Mean, covariance

Elx] =0
E[(x —0)(x—0)']=T




Interesting Directions ~ *°

for Data Visualization

What distribution Is interesting to visualize?

If data follows the Gaussian distribution,
samples are spherically distributed.
Visualizing spherically x
distributed samples Is
not so interesting.
What about “non-
Gaussian” data?




Non-Gaussian Distributed Data39

Non-Gaussian data look interesting:
=) We want to project the data so
that it has non-Gaussian distributions

Uniform Gaussian mixture Laplacian
(sharp edge) (cluster structure) (existence of outliers)




Projection Pursuit *

ldea: Iteratively find non-Gaussian directions
In the data

For k=1,2,...,m
Find the most non-Gaussian direction in data:

¢k — al'gimnax Jpp(b)
bl {; =}
Widi- subject to ||b|| =1

PP embedding of a sample z':

2z = Bppx’  Bpp = (Y, |9,,)"
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Kurtosis

PP needs a non-Gaussianity measure.
Kurtosis:

g, — s~ E[s])"] (> 0)

(E[(s — E[s])?])? s = (b, x)

If tail of distribution iIs

e Heavy mmmp [, is large
eLight mmp 5, issmall




Kurtosis (cont.) *

B4 = 3 : Gaussian distribution
G4 < 3 : Sub-Gaussian distribution
B4 > 3 : Super-Gaussian distribution

. Gaussian . :
Uniform . Gaussian Laplacian
mixture

| 114 A

B4 <3 B4 <3 B4 =3 Ba >3



Kurtosis-Based 43

Non-Gaussianity Measure
Non-Gaussianity is strong if (31 — 3)* is large.
In practice, we use empirical approximation:

| <=n 4 2 s; = (b, x;)
)= (5500 oY) Ly
There is no known method for analytically -
solving the optimization problem.

1 = argmax Jpp(b) subject to ||b|| =1
bL{;}; ]

We resort to numerical methods.



Gradient Ascent Approach *

Repeat the following until convergence:

e Update b to increase Jpp : 4 Jpp
- O0Jpp /
b+—b+e¢ T (e > 0) //\/A>

e Modify b to satisfy bl {w, i}l

k—1 . |
be— b= e S o
i=1 span({t,;};2))
e Modify b to satisfy ||b|| =1 : Ib] =1

“°
b« b/||b] \
o




Data Centering and Sphering *

Centering: |
r; <—x; — EZEZLB]
j=1
Sphering (or pre-whitening): .
1 1 T
x;, +— C 2x; C:ﬁzijj
=1
Covariance matrix for sphered data: :
C =1,

/ Sphering




Gradient for Sphered Data *

For centered and sphered data, gradient is
given by

0Jpp l —
b 2<n2(bmz )( szbicz )

1=1

Updating rule is

P b%b—l—s(%;ﬂ;bw@ ) Z:czb:cz

® b« b/|b]



Examples

1, n = 1000
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Examples (cont.)

=2, m=1, n = 1000

- ()
~ L(0,1)
~ N(0,1)

48



Homework

Prove the followings for centered and
sphered data:

e Covariance matrix is given by

> (@ - @) - =1L

e Jpp under ||b|| =1 is given by

n 2
Jpp(b) = <% Z<b7 ;)" — 3)
=1
e Gradient dJpp/0b IS given by

0Jpp l —
b 2<n2(bmz )( szbicz )

1=1
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